
strchr.com

x86 Machine Code Statistics
Which instruction is the most common one in your code? In this test, three
popular open-source applications were disassembled and analysed
with a Basic script:

7-Zip archiver (version 2.30 beta 28, file 7za.exe),

LAME encoder (version 3.92 MMX, file lame.exe), and

NSIS installer (version 2.0, file makensis.exe).

All programs were developed with Microsoft Visual C++ 6.0.

Most frequent instructions

The most popular instruction is MOV (35% of all instructions). Note
that PUSH is twice more common than POP. These instructions are used in
pairs for preserving EBP, ESI, EDI, and EDX registers across function calls,
and PUSH is also used for passing arguments to functions; that's why it is
more frequent. CALLs to functions are also very popular.

More than 50% of all code is dedicated to moving things between registers
and memory (MOV), passing arguments, saving registers (PUSH, POP), and
calling functions (CALL). Only 4th instruction (CMP) and the following ones
(ADD, LEA, TEST, XOR) do actual calculations.

From conditional jumps, JE and JNE (equal and not equal) are the most
popular. CMP and TEST are commonly used to check conditions. The
percentage of the LEA instruction is surprisingly high, because MS VC++
compiler generates it for multiplications by constant (e.g., LEA eax,
[eax*4+eax]) and for additions and subtractions when the result should be
saved to another register, e.g.:

LEA eax, [ecx+04]
LEA eax, [ecx+ecx]

The compiler also pads the code with harmless forms of LEA (for example, the
padding may be LEA edi, [edi]). As is easy to see, the top 20 instructions
include all logical operations (AND, XOR, OR) except NOT.

Though LAME encoder uses MMX technology instructions, their share in the
whole code of the program is very low. Two FPU instructions (FLD and
FSTP) appears in the top 20.

But what about other instructions? It turns out that multiplication and
division are very rare: IMUL takes 0.13%, IDIV takes 0.04%, and both
MUL and DIV do 0.02%. Even string operations such as REPZ SCASB or
REPZ MOVSB are more common (0.32%) than all IMULs and IDIVs. On the
contrary, FMUL is more common than FADD (0.71% versus 0.27%).

Average instruction length

75% of x86 instructions are shorter than 4 bytes. But if you multiply the
percentage by length, you will find that these short instructions take only 53%
of the code size. So another half of a typical executable file consists of
instructions with 32-bit immediate values, which are 5 bytes or
longer.

The number and type of operands

https://www.strchr.com/
http://www.7-zip.org
http://www.mp3dev.org
http://www.nullsoft.com/free/nsis/

Here are some examples of operand types:

immediate: 00000008, 00401024;

register: eax, esp;

absolute address: dword[00401024], byte[00401024];

indirect address: dword[esp + 10], dword[00401024 + eax * 4];

The parser is fairly limited and operands of the JMP and CALL instructions
are counted as immediate, while in fact they are absolute addresses. Still you
can see that most operands are registers. Global variables are rare in
modern programs.

Instruction formats

Examples of these instructions:

register-memory: ADD eax, [esp + 10]; MOV eax, [00401024]

register-register: ADD eax, ecx

register-immediate: CMP eax, 10

memory-register: MOV [esp + 10], eax; MOV [esi + ecx * 4], eax

memory-immediate: MOV [esp + 10], 0

Conclusion
Certainly, some observations are true only for MSVC++ compiler. Other
compilers will use other instructions; for example, some of them can't do the
trick with LEA instruction, and they will use IMUL or MOV/ADD instead. But
you can see several general trends: most instructions have 2 operands;
memory-register format is less frequent than register-memory; MOV is the
most popular instruction and so on.

Download source code (Basic, AWK) and Excel sheet with all
data (19 Kb)

Created 10 y ears ago by Peter Kankowski
Last changed 10 y ears ago

9 comments

Peter Kankowski, 13 years ago
Here are more comments about this post:
http://board.flatassembler.net/topic.php?t=5249

Moraaz Code Blog » x86 Machine Code Statistics, 12 years ago
[...] [via] [...]

Raymond Delord, 9 years ago
I don't think those measures are really relevant.

Because, even if add, and other calculus instructions had really little number of
use, they are often used in kinds of loops 'for' or 'while'.

And by using your code only on encoding and installing programs, your results
will obviously show the "mov" instructions as the more used.

The relevant measure would be to make statistics on instant code.

Peter Kankowski, 9 years ago
Thanks for the interesting idea. Gathering statistics at run-time would require
much more work. As I can imagine, an x86 emulator would be needed, because
performance counters don't provide a counter for each instruction.

Joe Smirnoff, 8 years ago

https://www.strchr.com/media/x86analysis.zip
http://board.flatassembler.net/topic.php?t=5249

Well, Peter, you could just use Valgrind. It's basically a x86 run-time emulator.

Vladimir Sedach, 7 years ago
Peter, run-time stats is close to your data. See

"Analysis of x86 Instruction Set Usage for DOS/Windows Applications..." by
Ing-Jer Huang and Tzu-Chin Peng

at

http://esl.cse.nsysu.edu.tw/publications/paper/conference/Analysis%20of%20x86%20Instruction%20Set%20Usage%20for%20DOS%20Windows%20Applications%20and%20Its%20Implication%20on%20Superscalar%20Design.pdf

Peter Kankowski, 7 years ago
Vladimir, many thanks for the link!

G.Nitz, 6 years ago
That was a very interesting thing I never read about before. Thanks a lot for it.

Mr. G.

Sirmabus, 6 years ago
I went searching for instruction statistics and luckily your page came out at the
top.

I wasn't surprised when I saw it was from your site that I've visited often.

Very useful information, presented in a way easy to grasp with your graphs,
etc.

Raymond, your post was years ago but anyhow, your sort of comparing
"comparing apples to oranges" here.

Better yet like comparing "Red" to "Gravenstein" (different) apples, as he says
says here "..most common one in your code". Which implies a context of the
instructions a compiler generates, dynamic as in measuring the qualities of
running could is IMHO a distinctly different context.

And incidentally would be hard, if not impossible to trace dynamically in real
time. You are talking with an emulator or tracer an exponential slow down that
could alter the code flow of the target (as it compensates for the slow down,
order of it's message flows are different, etc). Unless perhaps using some sort of
ICE setup.

Spasiba moi droog,

Your name:

Comment:

Submit

Featured pages
Discussion: the first language
Which programming language to learn first?

Hash functions: An empirical comparison
Benchmark program for hash tables and comparison of 15 popular hash functions.

Recommended books and sites
The minimal reading list to become a good programmer.

Software interface design tips
How to design easy -to-use interfaces between modules of y our program.

Implementing strcmp, strlen, and strstr using SSE 4.2 instructions
Using new Intel Core i7 instructions to speed up string manipulation.

Table-driven approach
How to make y ou code shorter and easier to maintain by using array s.

x86 Machine Code Statistics
Which instructions and addressing modes are used most often. What is the av erage instruction length.

Recent comments
(c) Peter Kankowski, 2006—2019. Some rights reserv ed.

http://esl.cse.nsysu.edu.tw/publications/paper/conference/Analysis of x86 Instruction Set Usage for DOS Windows Applications and Its Implication on Superscalar Design.pdf
https://www.strchr.com/first_language
https://www.strchr.com/hash_functions
https://www.strchr.com/links
https://www.strchr.com/software_interface
https://www.strchr.com/strcmp_and_strlen_using_sse_4.2
https://www.strchr.com/table-driven

	x86 Machine Code Statistics
	Most frequent instructions
	Average instruction length
	The number and type of operands
	Instruction formats
	Conclusion
	9 comments
	Featured pages
	Recent comments

