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                            CHAPTER 1

                          INTRODUCTION

PURPOSE OF MANUAL.

     This manual provides 6502 assembly language instructions
addressed directly to APPLE II computer applications.  The infor-
mation contained herein is intended for use by beginning, inter-
mediate and advanced programmers.

SCOPE OF MANUAL.

     This manual contains explanations of basic symbols and
terminology used by programmers and engineers.  Included is an
introduction to computer concepts, simple assembly language
instruction examples, and detailed 6502 assembly language
instructions as related to APPLE II computer requirements.

GENERAL.

     Why another book on 6502 assembly language?  Well, there
are several reasons.  First, there were only two books available
on the subject when I began writing this book.  Second, none of
the available books address themselves directly to the APPLE II
computer.  While assembly language theory can be learned from
books, examples that run on other computers using 6502 assem-
bly language are of little use to the APPLE II computer owner.

     This book is the product of my experiences as a 6502
assembly language instructor.  The material chosen for this book
is easily learned by the beginner.  No promises can be made con-
cerning your individual levels of expertise achieved after reading
this book, but the material presented here should raise you to the
level of an intermediate 6502 assembly language programmer.
The "expert" status is achieved only through years of experience.

     This book is intended for the beginner.  Intermediate and
advanced programmers may find several items of interest in this
book, but it was written with the beginner in mind.  If you have had
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prior 6502 experience, the first few chapters may contain infor-
mation which you have seen previously.  AVOID THE TEMPTA-
TION TO SKIP ANY MATERIAL!  If one important detail is not
understood, the remainder of the book may prove impossible to



understand.  So take the time to review all of the available material
and make sure that you understand the reviewed section before
going on.  Obviously, if you are a beginner it is very important that
you understand each section before continuing.

     Since there are so many excellent books on computer the-
ory, microcomputers, etc., I will try to keep the discussion of these
subjects to a minimum.  There are several books you should own
if you are interested in learning 6502 assembly language.  Books
I highly recommend include:

     HOW TO PROGRAM MICROCOMPUTERS
          by William Barden Jr.

     PROGRAMMING THE 6502
          by Rodney Zaks

     PROGRAMMING A MICROCOMPUTER
          by Caxton C. Foster

     6502 ASSEMBLY LANGUAGE PROGRAMMING
          by Lance Leventhal

     6502 SOFTWARE GOURMET GUIDE & COOKBOOK
          by Robert Findley

     While all of the previously mentioned text books are excel-
lent, they were not written with the APPLE II computer in mind.
This text presents practical applications instead of just the theory.
Since each of the above books present 6502 assembly language
in a different manner you may refer to them should you encounter
any difficulties understanding the material presented here.  If you
are serious about learning assembly language you should have
access to the previously mentioned text books as well as this
manual.

     Before getting into assembly language, it would be very wise
to aquaint you with some of the 'jargon' that will be used through-
out this manual.
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     RAM: User memory.  Programs and data are stored in
          the RAM.
          (RAM is an acronym for Random Access Memory)

     ROM: Used to hold the Apple monitor and BASIC.  You
          cannot store data or programs in the ROM.
          (ROM is an acronym for Read-Only Memory.)

 MONITOR: A set of subroutines in ROM which allow you
          to read the keyboard, write characters to the
          video screen, etc.

   BASIC: When the word "BASIC" is used, it means Integer



          BASIC.  Applesoft BASIC is referred to as
          "Applesoft."

       K: When "K" is encountered, you simply substitute
          "x 1024" (i.e, multiplied by 1024).
          Generally used to denote a memory size (such
          as 48K).

  MEMORY: Combination of all RAM and ROM locations.

  SIGNED: Any legal positive or negative integer ("legal"
  NUMBER  as defined by the current operation).

UNSIGNED: Any legal positive (only) number.  Negative
  NUMBER  numbers are not allowed.

    BYTE: One unit of memory.  A byte can represent up
          to 256 different quantities (such as the numbers
          0-255).

    WORD: Two bytes stuck back to back.  With a word
          you can represent up to 65,536 different quantities
          (such as the numbers 0-65,535 or the signed
          numbers (-32768) to (32767)).

  SYNTAX: The rules governing sentence structure in a
          language, or statement structure in a
          language such as that of a compiler program.

 ADDRESS: Two bytes used to point to one of the 64K available
          memory locations in the APPLE II computer.
          An Address is also a Word but a Word is not
          necessarily an Address.

    PAGE: The 65,536 bytes in the address range of the
          APPLE II computer are broken into 256 blocks
          blocks of 256 bytes each.  These blocks are
          numbered 0 to 255 and are called pages.

    ZERO: The first 256 bytes in the memory space (page number
    PAGE  0) of the APPLE II computer are often referred to
          as the "zero page" or "page zero."  Naturally
          there is a "page one," a "page two," etc., but
          the use of the first 256 bytes in the machine
          occurs so often that the term, "zero page,"
          has come into common use.
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    SLOT: One of the peripheral connectors (0-7)
          on the APPLE II computer.

     I/O: An acronym for input/output.

    LISA: An acronym for Lazer Systems Interactive



          Symbolic Assembler, pronounced LI ZA,
          not LE SA.

PERIPHERAL: An I/O device (such as a disk or printer) connected
            externally to the computer.

     It is assumed, in this manual, that the reader is familar with
Apple BASIC.  BASIC will only be used in a few examples, but
familiarity with BASIC means that you have mastered at least the
elementary programming techniques.  Assembly language is not
the place for an absolute beginner to start.  You should be some-
what familar with programming concepts before attacking assem-
bly language.  Assembly language is a very detailed programming
language and it is easy to get lost in the details if you are trying
to learn elementary programming at the same time.

    Learning any program language, especially assembly lan-
guage, requires "hands-on" experience.  All of the examples pre-
sented in this book use LISA (a disk-based 6502 assembler for
the APPLE II computer).  LISA is excellent for beginners because
it is interactive, meaning it catches syntax errors immediately after
the line is entered into the system.  This is very much like Integer
BASIC in the APPLE II computer.  Since LISA catches syntax errors,
learning assembly language will be easy.  It is doubtful that you
will ever "outgrow" it.  This is not true for many other assemblers
available for the APPLE II computer.  If you decide to purchase
an assembler now, keep in mind that, for the most part, you are
stuck with it for life, since none of the assemblers available are
compatible with one another.  So software which you create on
one assembler cannot be loaded into another assembler, even
though they are both for the APPLE II computer!  Even if LISA
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were not interactive, I would still recommend it, since it is very
powerful and will suit your needs for quite a while to come.

WHY USE ASSEMBLY LANGUAGE?

     The fact that you have read the text this far shows that you
have an interest in the subject.  Nevertheless, some of you are
certain to have some misconceptions about the language.
Assembly language should be used when speed is the foremost
requirement in a program, or possibly when you need to control
a peripheral device, or maybe you have a specialized application
that cannot be executed easily (or cleanly) in one of the high-
level languages on the APPLE II computer.

     You should not use assembly language for business or sci-
entific purposes.  Pascal, FORTRAN, or Applesoft are better
suited for these applications.  Floating point arithmetic, although
not impossible or even especially hard, is not something a begin-
ner, or even an intermediate programmer would want to tackle.



     Another advantage provided by assembly language pro-
grams is the possibility of interfacing them to existing BASIC,
Applesoft, and Pascal programs.  You can program the time crit-
ical sections of code in assembly language; the rest of the code
can be written in BASIC.

     Once you become experienced in assembly language pro-
gramming you will discover that you can write and debug assem-
bly language programs as fast as BASIC programs!

     Good luck.  Hopefully, you will find machine language pro-
gramming as easy as BASIC!

     LISA is available from your local computer store, or directly
from:

          DATAMOST, INC.
          8943 Fullbright Avenue
          Chatsworth, CA. 91311
          (213) 709-1202
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                            CHAPTER 2

                            SYMBOLISM

GENERAL.

     When you see the number 4, what do you think?  The number
4 is simply a symbol connected with the concept of four items.
When humans communicate, they use several symbols to relay
their ideas.  As such, humans are very adaptive.  If I told you that
from now on we'll use the symbol "- -" to represent four, you
could make the change.  It might not be easy, but the change is
possible.

     Computers, on the other hand, are very stupid.  They are not
adaptive and understand only a very low-level language which
humans have considerable trouble understanding.  This language
is not "assembly" or "machine" language.  Assembly, or machine
language, is actually a human convention that makes an even
lower-level language acceptable!  The actual low-level language
understood by a computer consists of different voltage levels on
different wires within the machine.  Although, with lots of educa-
tion, humans can understand what each of these voltage levels
mean (and in fact your friendly neighborhood computer repair
man should), it certainly isn't very convenient.  As such, we usually
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rename the voltage levels something else (bits, true, false, 0, 1,
etc.).  We do the same thing in spoken languages all the time.  For
instance, "deux" (French) usually gets translated to "two"
(English).  Renaming voltage levels "bits" and groups of bits
"words" performs this same function.  We're merely taking one
symbol, which is hard to understand, and translating this symbol
to one easier to understand.

     The translation occurs in several distinct steps.  These steps
include:

     VOLTAGE    =>   BINARY   =>   CHARACTERS
      LEVELS    =>   DIGITS   =>    NUMBERS
     (+5v,0v)   =>    (0,1)   =>     ETC.

     Note that this translation is not performed by the computer.
It is performed by humans.  Remember, computers are dumb.

     Once we realize that computers only represent "things" with
voltage levels, a natural question is: 'How do we represent
"things" with voltage levels?' Well, as it turns out, representing
binary digits (or bits) is really quite simple.  We have two voltages
(+5v and 0v) and two binary digits (0 and 1) to work with.  Since
we have a one-to-one correspondence, we'll just arbitrarily assign
"1" to +5v and "0" to 0 volts.  The assignment is perfectly arbi-
trary.  We could have defined the binary digit "0" to be +5v and
the binary digit "1" to be 0 volts.  By convention (which means
everyone has more or less agreed upon it), however, we'll stick
to the former definition.

     With one bit, we can represent two different values or
"states."  Examples include the so-called Boolean values (true or
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false), signs (+ or -), yes or no, on or off, and any other user-
defined binary quantities (husband/wife, boy/girl, ... you get the
idea).

     Now that we have a bit to play around with, would you like
to play around a bit?  Let's define some operations on this bit.
First, we need to define an ordinality for our binary values.  This
is necessary because often we need to compare one value to
another to determine which is the greater.  "0" and "1" are easy,
one is always greater than zero.  For the other binary values we
need to use our intuition to decide on the ordinality.  "True" should
be greater than "false," so let's assign true the value "1" (or +5v)
and false the value "0" (or 0v).  Yes/no, on/off, etc., should be
assigned in a similar manner.  When it comes to data types, such
as male/female, the choice is arbitrary.  If you're a male you'll
probably pick the "male" data type as being larger; if you're a
female you'll probably pick "female" as being the greater value.

     Keep in mind that our usage of +5v and 0v becomes very
context-dependent.  Sometimes +5v will be used to denote the



number "1," other times it will be used to denote the "true" value
and in other instances it will be used as "on," etc.  Try not to get
confused about the type of data you are trying to represent as
this can cause all kinds of problems.  From this point on I will
universally use "1" to denote +5v and "0" to denote 0v.  For
example, when I say that "true" is defined as the value "1," I really
mean that true is defined as +5v.

BIT STRINGS.

     Up to this point we have limited ourselves to one binary digit,
or "bit."  Although there are several applications where one bit
provides enough information for our needs, there are other times
when we need to represent more than two different values.  A
good example would be the base ten digits (0 thru 9).  In this
example we need to represent ten different values but our bit can
only supply us with two.  Well, why not use more than one bit to
represent the different values?  Specifically, let's use 10 bits and
label them 0 thru 9.  Now, to represent the digit "5," for example,
we can set the sixth bit to "1" (leaving all others zero).  To repre-
sent the value "0" we would set the first bit to "1," leaving the rest
"0."  To represent the digit 9 we would set the tenth bit to "1,"
leaving all others at "0."
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     Each decimal digit would require 10 bits and would be laid
out as follows:

     DECIMAL          BIT NUMBER
      DIGIT
                0 1 2 3 4 5 6 7 8 9

        0       1 0 0 0 0 0 0 0 0 0
        1       0 1 0 0 0 0 0 0 0 0
        2       0 0 1 0 0 0 0 0 0 0
        3       0 0 0 1 0 0 0 0 0 0
        4       0 0 0 0 1 0 0 0 0 0
        5       0 0 0 0 0 1 0 0 0 0
        6       0 0 0 0 0 0 1 0 0 0
        7       0 0 0 0 0 0 0 1 0 0
        8       0 0 0 0 0 0 0 0 1 0
        9       0 0 0 0 0 0 0 0 0 1

     Note that the bits are numbered 0 thru 9.  When numbering
bits within a bit string, we will always start at bit number 0.  Bit
number 0 is the first bit, bit number 1 is the second bit, ..., bit
number 9 is the tenth bit, etc.  It is possible to have only a single
bit "set" (set means equal to one) in our bit string.  A value of
100100100 is not defined.  This scheme would probably work just
fine, except it is not very efficient.  We have a unique string of bits
for each value, but as we have defined it here there are several
combinations that are unique but undefined.  Since each bit we
use will cost us money (since it takes one of those 16K RAM
chips to equal one bit) we would like to define a bit string which
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uses memory efficiently, thereby lowering the cost of our com-
puter.

     To make our discussion easier to understand, let's just con-
sider two bits.  As per the previous discussion we can represent
two different values with the two bits, zero and one.  Wait a minute!
Previously We discovered that we could represent two different
values with only one bit!  This means, that right off the bat, we are
wasting at least half of our memory!  So why don't we define the
numbers zero and one as having the following two-bit values:

     value   bit string
       0         00
       1         01

     Note that we are using the value and simply tacking on a
leading zero.  Now consider the following bit strings:

     value   bit string
       ?         10
       ?         11

     Notice that the value is undefined.  We can't use zero or one
because these two bit strings are quite obviously two different
values from zero and one as previously defined.

     Since we now have two additional values, why not use them
to represent the values two and three?  If we do this, we wind up
with the following:

     value   bit string
       0         00
       1         01
       2         10
       3         11

     So now we can represent four different values with only two
bits!  We save two bits over the previous method by defining our
data this way!

     Now suppose we use a bit string of length three to represent
our values.  As before, if the left-most bit is zero, we can simply
ignore it (the left-most bit is often called the "high-order" bit).  This
leads to:

     value   bit string
       0       000
       1       001
       2       010
       3       011
       ?       100
       ?       101



       ?       110
       ?       111
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    Notice that we now have FOUR undefined values.  Conti-
nuing as expected, we will define these next four values to be the
values 4 thru 7.  Now we are saving quite a bit of memory.  Remem-
ber, previously it took eight bits to represent the values 0 thru 7,
now it only takes three!  We have cut our memory usage down to
almost one third of that previously required!  Since we want to be
able to represent the decimal digits 0 thru 9, it looks like we will
need to add another bit to our bit string since three bits can only
represent the values 0 thru 7.  Upon appending this extra bit we
obtain the following:

     value   bit string
       0       0000
       1       0001
       2       0010
       3       0011
       4       0100
       5       0101
       6       0110
       7       0111
       ?       1000
       ?       1001
       ?       1010
       ?       1011
       ?       1100
       ?       1101
       ?       1110
       ?       1111

     By adding the extra bit we have added EIGHT new values
to our number system.  We only needed two more values however!
Since we now have 16 different values on our hands, we can
represent the values 0 thru 15.  But, since we only needed to
represent the values 0 thru 9, we will leave the bit combinations
1010 thru 1111 undefined.  Yes, we are wasting some memory,
but remember, we only wanted to represent the values 0 thru 9
so the waste can be considered undesirable, but required in this
case.  Notice the final memory savings - only four bits are required
as opposed to ten!  In general, each time we add a bit to our bit
string we DOUBLE the number of possible combinations.  For
instance, with eight bits we can represent 256 different values,
with ten bits we can represent 1024 different values, and with 16
bits we can represent 65,536 different values.

     We have just invented the binary numbering system which
is used by computers!  Each bit in our bit string represents a power
of two.
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     7   6   5   4   3   2   1   0

      7   6   5   4   3   2   1   0
     2   2   2   2   2   2   2   2

     The first bit represents 2^0 (any number raised to the power
"0" is one), the second bit represents two raised to the first power
(i.e, 2^1), the third bit represents two raised to the second power
(2^2), etc.  For example, binary 1100101 represents 1x2^6 + 1x2^5
+0x2^4 + 0x2^3 + 1x2^2 + 0x2^1 + 1x2^0 or 101 in decimal.

     With eight bits we can represent up to (128) + (64)
+ (32) + (16) + (8) + (4) + (2) + (1) plus one (since we can also
represent zero which is distinct from all the other values) or 256
different values.  In general, to represent 2^n - 1 distinct values
(such as the numbers 0 to 2^n - 1) we will need n bits.  For instance,
to represent the ten decimal digits 0-9, three bits are not enough
as (2^3) - 1 equals 7, we still need two more values.  In order to get
these two extra values we must add another bit even if it means
some of the available combinations must be wasted.  Converse
to all of this, if we are limited to n bits we can only represent 2n
different values (such as the numbers 0 to (2n) - 1).

     Remember, we can represent quantities other than numbers
with our bit strings.  For instance the colors RED, BLUE, YELLOW,
and GREEN as follows:

          COLOR    BINARY CODE
          RED          00
          BLUE         01
          YELLOW       10
          GREEN        11

     Or possibly the alphabetic characters:

          Character   Binary Code
             A           00000
             B           00001
             C           00010
             D           00011
             E           00100
             F           00101
             .             .
             .             .
             .             .
             X           10111
             Y           11000
             Z           11001
          (UNUSED)       11010
          (UNUSED)       11011
          (UNUSED)       11100
          (UNUSED)       11101
          (UNUSED)       11110
          (UNUSED)       11111
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     Since there are 26 characters, we'll need 5 bits (2^5=32).
Four bits simply aren't enough (2^4=16).

BINARY ARITHMETIC.

     Now that we know how to represent data, let's see how to
manipulate this data.

BASIC ADDITION RULES:

     First let's review what happens when we add two numbers
in the decimal (base ten) system.  If we were to add 95 and 67,
we would perform the following steps:

     -First we add 5 and 7

           95
          +67  add 5 to 7
          --- 
            2  result is 2, carry is 1.

     Next, we add 9 and 6, plus one since there was a carry.

           95
          +67  add 9 to 6 plus one (from the carry).
          --- 
           62  result is 6, carry is 1.

     After the carry is added in, we get the final result of 162.

     Binary addition works the same way, but is even easier.  It's
based on seven rules:

     1)  0 + 0 = 0; carry = 0
     2)  1 + 0 = 1; carry = 0
     3)  0 + 1 = 1; carry = 0
     4)  1 + 1 = 0; carry = 1
     5)  0 + 0 + carry = 1; carry = 0
     6)  1 + 0 + carry = 0; carry = 1
     7)  1 + 1 + carry = 1; carry = 1

     So, now we can add any n-bit binary quantity as follows:

STEP 1) Add 0 to 1 in the first column, which generates 1, carry
= 0.

          0110
          0111
          ---- 
             1  C = 0
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STEP 2) Add 1 to 1 in the second column, giving zero and carry
= 1.

          0110
          0111
          ---- 
            01  C = 1

     STEP 3) Add 1 and 1 plus 1 (from the carry).  This gives us
1 and the carry remains set (equal to one):

          0110
          0111
          ---- 
           101  C = 1

     STEP 4) Add 0 to 0 plus 1 (from the carry).  The result is one,
and the addition is complete.

          0110
          0111
          ---- 
          1101  C = 0

     This procedure can be carried on for any number of bits.
Examples of binary addition:

          01101100        1101101
          11101011        1111011
          --------        ------- 
         101010111       11101000

UNSIGNED INTEGERS.

     Up to this point we've made the assumption that we have as
many bits as we need at our disposal.  In the 'real' world, this is
simply not the case.  Usually we are limited to a fixed number of
bits (usually 8 or 16).  Due to this restriction, the size of our num-
bers is limited.  With 16 bits we can represent numbers in the
range 0 to 65,535 (2^16 - 1 = 65,535).  With eight bits we can rep-
resent values in the range 0 to 255.  Since the 6502 is an 8-bit
machine (we are limited to using 8 bits at a time), it would seem
that we can only handle numbers in the range 0-255.  Luckily
this is not entirely true, multiple precision routines will be studied
later on.  An unsigned integer will be defined as any value between
0 and 65,535, so an unsigned integer will need 16 bits.
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NIBBLES (NYBBLES?), BYTES, and WORDS.

     In our discussions, we will often use bit strings of length 4,



8, and 16.  These lengths are not arbitrary, but rather they are
dependant upon the hardware being used.  The 6502 likes its data
in chunks of 4, 8, and 16 bits.

     Since we use these lengths all the time, we have special
names for them.  A "NIBBLE" is a bit string of length four.  As you
may recall from the previous discussion, it takes at least four bits
to represent a single decimal digit.  Sometimes decimal numbers
are represented by strings of nibbles (i.e, groups of four bits) in
a form known as binary coded decimal.  Binary coded decimal
arithmetic is possible on the 6502 and will be discussed later.
Often, binary coded decimal is abbreviated to BCD.

     A "BYTE" is a bit string of length eight.  The byte is the most
common data type used by the 6502 because the data width of
the 6502 is eight bits (that is, the 6502 is an eight bit processor):

     A "WORD" is a bit string of length 16.  Words are used
primarily to hold addresses and integer values.  With a word it is
possible to represent up to 65,536 different values (64K).  This is
the reason the 6502 can directly address up to 64K of memory.

     Note that there are two nibbles in a byte and two bytes in a
word.  This generates some additional terminology.  Each bit string
has a low-order bit and a high-order bit.  The low-order bit is
always bit number 0, and the high-order bit is equal to (n - 1)
where n is the number of bits in the bit string.  For a nibble, n is
four so the high-order bit is bit number three (remember, we start
with zero!).  For a byte (n = 8) the high-order bit is bit number 7
and for a word (n = 16) the high-order bit is bit number 15.

     EXAMPLES:

          Bit #   15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
          --------------------------------------------- 

                                                    NIB
                                                1 0 1 0

                                                 BYTE
                                        0 0 1 1 0 0 1 1

                             WORD
                        0 0 1 0 1 1 1 0 1 1 1 0 0 0 1 1
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     Additional terminology results from the symmetry of nibbles,
bytes, and words.  Since there are two nibbles in every byte, we
can speak of a "high-order nibble" and a "low-order nibble."  The
low-order nibble is comprised of bits 0 thru 3 and the high-order
nibble is comprised of bits 4 thru 7 in any given byte.  Likewise,
the low-order byte in a word consists of bits 0 thru 7 and the high-
order byte consists of bits 8 thru 15.  These definitions come in
handy when we have to work with data in groups of eight bits, and



it's nice to be able to relate words and nibbles to bytes.

SIGNED INTEGERS.

     On many occasions a range of zero to (2n - 1) is simply not
enough.  To represent values larger than (2n - 1) all we need to
do is add additional bits to our bit string and the range of our
numbers is increased proportionately.  But sometimes we need to
be able to represent numbers less than zero.  Unfortunately, this
cannot be accomplished with the number system we have
described so far.  In order to represent negative numbers we must
abandon the binary numbering system we have created and
devise a new numbering system that includes negative numbers.

     While many numbering systems exist that allow negative
numbers, we are forced to use the so-called two's complement
numbering system.  This choice has to be made because of the
6502 arithmetic hardware.  The two's complement system uses
the following conventions:

     1) The standard binary format is used
     2) The high-order bit of a given binary number is assumed
        to be the sign bit.  If this bit is set, the number is
        negative.  If this bit is clear, the number is positive.
     3) If the number is positive, its form is identical to the
        standard binary format.
     4) If the number is negative, it is stored in the two's
        complement format.

     The two's complement format is achieved by taking a posi-
tive number, inverting all the bits (that is, if a bit is zero change
it to one; if a bit is one change it to zero), and then adding one to
the inverted result.  For example, given that the positive 16-bit
representation for two is:

          0000000000000010
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then the two's complement of two (i.e, minus two) is computed by
inverting all the bits:

          1111111111111101

and adding one to the inverted result:

          1111111111111110

Therefore, 1111111111111110 is the two's complement repre-
sentation for minus two.  The two's complement operation, also
called negation, can be thought of as a multiplication by minus
one.  In fact, if you take the two's complement of a negative num-
ber, you wind up with its positive counterpart.  Consider minus
two:



          1111111111111110

To take the two's complement of minus two, we first invert all the
bits:

          0000000000000001

Next, one is added to the result so that we obtain:

          0000000000000010

which is the binary representation for two!

     Why even bother with such a weird format?  After all, it's
probably much simpler to just use the high-order standard binary
format.  Well, a simple addition problem may help clear things up.
Consider the addition of two plus minus two.

          0000000000000010
          1111111111111110
          ---------------- 
          0000000000000000  carry = 1

     Note that if we ignore the carry out of bit #15, we wind up
with a zero result, exactly what we expect.  It is easy to prove to
ones self by the use of examples that if the carry is ignored, the
result is always what one would expect.

     If the carry out of the sixteenth bit is meaningless, how does
one detect an overflow?  If the sign bit is treated as a separate
entity from the rest of the number, bit #14 is technically the high-
order bit.  A carry out of this bit will be what we test for to determine
two's complement overflow.
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HEXADECIMAL NUMBERS.

     Binary numbers are fine for examples.  But when used for
conveying information to people, they tend to be too bulky.  Can
you imagine having to write out one hundred 16-bit numbers in
binary?  Or having to read them?  Several years ago programmers
began using the octal (base eight) numbering system to compact
the large binary numbers.  With the octal system it is possible to
cram 16 bits of information into six digits.  The octal numbering
system is still popular on several minicomputers today.  When
microcomputers came along, manufacturers switched to the hex-
adecimal numbering system which made it possible to get 16 bits
of information into only four digits!  The only drawback to the hex-
adecimal numbering system is that most people are not familiar
with it.  The hexadecimal system (base 16) contains 16 distinct
digits.  The first ten digits are the familar numeric characters 0 thru
9 and the last six digits are the alphabetic characters A thru F.
Hexadecimal numbers have the values:



          BINARY   DECIMAL   IEXADECIMAL
           0000       0           0
           0001       1           1
           0010       2           2
           0011       3           3
           0100       4           4
           0101       5           5
           0110       6           6
           0111       7           7
           1000       8           8
           1001       9           9
           1010      10           A
           1011      11           B
           1100      12           C
           1101      13           D
           1110      14           E
           1111      15           F

     Why all the fuss over hexadecimal numbers (or hex numbers
as they are usually referred to)?  They are easy to convert to
binary and vice versa.  Decimal numbers, unfortunately, are not
as easy to use.  For example, 11111100 is not easily converted
to 252 decimal, but it is a trival matter to convert it to the hex-
adecimal number FC.  Clear as mud, right?  It's actually quite sim-
ple once you learn one little trick.  In order to convert a binary
number to a hexadecimal number you must first adjust the binary
number so that it contains the number of bits which are a multiple
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of four (four, eight, twelve, sixteen, etc.).  You accomplish this by
adding leading zeros to the left of the binary number.  Next, you
start from the right and divide the bit string into groups of four bits
each.  Look up each of these "quadruples" in the chart above and
replace them with the corresponding hexadecimal value.  In the
previous example, 11111100 is split up into two groups of four
bits yielding 11111100.  Looking up 1111 in the chart yields the
hexadecimal digit "F".  The binary number 1100 corresponds to
the hexadecimal digit "C".

     Going in the other direction, converting hexadecimal to binary,
is just as easy.  Simply look up the binary equivalent of each hex-
adecimal character in a hex string and substitute the binary value.
Don't forget to include leading zeros in the middle of a hex string.
For example, EFC4 converts to 1110 1111 1110 0100.
Although hexadecimal numbers may seem cumbersome to the
new programmer, they are in fact a great convenience.

RADIX AND OTHER NASTY DISEASES.

     Now we have decimal, binary, and hexadecimal numbers.
If you were to find "100" printed somewhere, how would you be
able to tell which base, or "radix," the number is represented in?
Does "100" mean 100 base two (ie., decimal four), 100 base 10
(i.e., one hundred), or "100" hex (i.e., 256 decimal)?



     To avoid confusion the radix is usually specified by some
leading character.  If a number is prefaced by a percent sign the
number will be considered to be a binary number.  If the number
is preceded by a dollar sign the number will be assumed to be
hexadecimal.  A exclaimation point is used to denote a decimal
number.  Decimal numbers may also appear without a radix prefix,
so if a string of digits appears without a leading radix character
the decimal number system is assumed.  The use of the radix
prefix prevents ambiguity.

ASCII CHARACTER SET.

     As has been continually pointed out, binary values may be
used to represent values other than numeric quantities.  A com-
puter is required to handle text consisting of alphabetic charac-
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ters, numeric characters, and several punctuation symbols as
often as it must perform numeric manipulation.  Since character
manipulation is very important, we must define a character set,
that is, a set of unique binary values for each of the valid char-
acters we wish to represent.

     As you may remember, it requires a minimum of five bits (or
32 distinct values) to represent the characters of the alphabet.
When you add to that the numeric characters 0 thru 9, it becomes
apparent that six bits are going to be required.  When you add the
lowercase letters and several punctuation characters, the number
of required characters jumps to 96.  Finally, by adding several
"device-control" characters such as return, cursor control, tab,
the total jumps to 128 characters.  To represent 128 different
values requires seven bits.  To allow other special characters
(such as inverted or blinking characters) another bit will be used
to bring the bit total to eight bits, yielding a maximum of 256
distinct characters.

     Now the only problem that remains is to assign these 256
different characters a unique 8-bit code.  Rather than create our
own character code, we will use the American Standard Code for
Information Interchange (ASCII) character set.  The ASCII char-
acter set is used by almost all computer manufacturers.  Even
IBM, which has used its own character set since the early sixties,
has finally started using ASCII characters in some of its equip-
ment.  The first 32 values in the ASCII character set are the so-
called control codes.  These include carriage return, line feed,
backspace, tab, and several other non-printing characters reserved
for device control use.  The next 32 characters are reserved for
the often used punctuation characters (such as period, comma,
space) and the numeric characters.  The following 32 characters
are reserved for the uppercase letters and some infrequently
used punctuation characters.  The final 32 values in the ASCII
character set are reserved for the lowercase letters and some
little-used punctuation characters.



     ASCII does not define the final 128 characters in the char-
acter set.  These are user-definable characters.  On the Apple II,
the remaining characters comprise the inverted and blinking char-
acter set.  For a full description of the Apple/ASCII character set,
see Appendix A.
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USING BIT STRINGS TO REPRESENT
INSTRUCTIONS.

     Until now we have assumed that bit strings are used only to
represent data of some type.  This is not always the case.  A bit
string can also be used to represent a command.

     Imagine, if you will, a small subset of the commands humans
obey every day.  One command might be the alarm clock ringing
in the morning, causing you to get out of bed.  A second command
might be, "Get dressed."  A third command could be, "Drive to
work."  A fourth command could be, "Perform all actions required
at work."  Another command could be, "Drive home from work."
And a last command could be, "Go to bed."  To represent these
six commands we need three bits.  The commands could be
assigned as follows:

          bit string   command
             000       Get out of bed.
             001       Get ready for work.
             010       Drive to work.
             011       Perform required duties.
             100       Drive home from work.
             101       Go to bed.

     With these simple commands the apparent actions of a
human being can be performed.  Each command will be assumed
to be given sequentially.  This does not mean numerically (i.e, in
the order given above), but rather it means that the human exe-
cutes one instruction at a time.  Although it may not make much
sense, it is perfectly valid to give the commands out of numerical
order.  For example, suppose the person drove to work and then
realized that he left something at home which was required to
perform his job-related duties.  This situation would require the
instruction sequence:

             000       Get out of bed.
             001       Get ready for work.
             010       Drive to work.
             100       Drive home and pick up forgotten items.
             010       Drive back to work.
             011       Perform required duties.
             100       Drive home from work.
             101       Go to bed.

     Obviously, several other schemes are possible with some



yielding weird results.  Commanding objects other than human
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beings is also possible.  Examples include automated machinery,
programmable toys, and, of course, the computer.  The fact that
commands can be represented as bit strings is the whole basis
for the computer programming to be studied in the following chap-
ters.
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                            CHAPTER 3

                     REGISTERS, INSTRUCTION
                          FORMATS, AND
                           ADDRESSING

GENERAL.

     Up until now, our discussion of data types has been, for the
most part, unrestricted.  Unfortunately, in the "real" world of com-
puters several restrictions apply which limit the size and feasibility
of the operation we wish to perform.  In order to be able to write
good programs the user must first learn the limitations, and
advantages, of the APPLE II computer.

     The APPLE II computer consists of three major parts:

     1) Central Processing Unit (6502 Microprocessor)
     2) Input/Output (Keyboard, Video Display, Disk, Etc.)
     3) Memory

     Memory in the APPLE II computer is arranged as 65,536 8-
bit bytes.  Each byte is individually addressable; that is, if we want
to, we can perform our data operation on any of the 65,536 loca-
tions available to us.

     Several of these locations (5120 in fact) are specifically
reserved for Input/Output (I/O) purposes 1024 of these locations
comprise the screen memory, and storing data in any of them
(located from $400 thru $7FF in memory) is likely to affect the
video display.  Another 4K (4096) of these memory locations is
reserved for use by the peripheral cards which plug into your
Apple.  The remaining 59K bytes (ie, 60,416 bytes) are used to
hold variables, your program, BASIC, Pascal, etc.  Typically, the
user has 48K at his disposal for program storage (minus any
language requirements such as DOS, etc.).

     The Central Processing Unit (CPU) is where all the action
takes place.  The CPU is the "brains" behind the computer.  Data
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is transferred to and from memory and I/O devices, arithmetic is
performed, comparisons are made, etc., within the CPU.  So, the
CPU will function as a "middleman" in most of our operations.

     Let's define the 6502 microprocessor.  Internally the 6502
microprocessor consists of an Arithmetic/Logical Unit (ALU)
where additions, subtractions, etc., take place, a control unit
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which moves data to and from memory, decodes the instructions,
and accesses six special memory locations called, registers.  Five
of these registers are 8 bits wide (just like our memory) and one
of them is 16 bits wide (the same as the 6502 address bus).

     These six registers each serve a special purpose, therefore
they have been given special names as follows:

     1) Accumulator (A or ACC)
     2) X-register (X)
     3) Y-register (Y)
     4) Stack Pointer (SP)
     5) Program Status Word (P or PSW)
     6) Program Counter (PC)

     A separate description of each register is given in the fol-
lowing paragraphs:

ACCUMULATOR (A or ACC).

     The accumulator is where most of the data transactions
occur.  Numbers are added and subtracted here.  Data transfer
from memory location to memory location usually goes through
the accumulator.  All logical operations occur in the accumulator.
For most of our purposes, the accumulator will be the general
purpose register that we utilize.

X-REGISTER (X).

     The X-register in the 6502 is a special purpose register.  We
cannot add or subtract numbers with it, however the X-register is
used for accessing elements of simple arrays, strings, pointers,
etc.  Using the X-register to access elements of an array is called
"indexing."  Often, the X-register is called the X-index register.  We
will discuss indexing later in the text.

Y-REGISTER (Y).

     The Y-register, identical to the X-register, is reserved for
indexing purposes.  Two different index registers allow us to per-



form such functions as substring, concatenation, and other array
functions.
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STACK POINTER (SP).

     The Stack Pointer is another special purpose register in the
6502.  It is used when calling subroutines and returning from sub-
routines, as well as when saving temporary data.  Since it is 8 bits
wide, the stack pointer can only be used to address 256 different
locations in the 6502 address space.  These 256 locations occur
from location $100 to location $1FF.

          NOTE

Since locations $100 thru $1FF are reserved for the Stack Pointer
register, NEVER use these locations for data or program storage.

PROGRAM STATUS WORD (P or PSW).

     The program status word (also called the processor status
register) is not a register in the true sense of the word.  It is simply
a convenient collection of seven status bits which will be used by
such things as conditional branches (to be described later).

PROGRAM COUNTER (PC).

     The program counter is a register used by the computer to
point to the instruction currently being executed.  This register is
unique in that it is the only 16-bit register on the 6502.  It is 16 bits
wide since 16 bits are required to access the 65,536 different
locations (the address space) on the 6502.

INSTRUCTION FORMAT (6502).

     Thus far we have discussed the ways computers store data
and where the data is manipulated (i.e., the registers).  We have
not discussed how we tell the computer what to do with this data.
A computer instruction is used to tell the 6502 which operation to
perform.  What is an instruction?  An instruction is simply another
8-bit code stored in memory.  Since each instruction is 8 bits wide
there is a maximum of 256 possible instructions.  In the 6502,
however, there are only about 120 actual instructions.  The instruc-
tion codes corresponding to these 110 to 120 instructions are
called valid instruction codes, or valid opcodes.  The remaining
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136 to 146 invalid instructor codes are referred to as the invalid
instruction codes, or invalid/illegal opcodes.



     The opcodes (computer instructions) are stored in memory
in a manner identical to date.  How then does the computer dif-
ferentiate between data and instructions?  Clearly, the meaning
of a byte in memory is very context-dependant.  A byte in memory
is assumed to be a computer instruction if the program counter
is ever allowed to "point" at (i.e., contain the address of) that
particular byte in memory.  Also, programs are assumed to be
stored sequentially in memory (with some exceptions).  That is,
the second instruction immediately follows the first instruction,
the third instruction follows the second, etc.

     EXAMPLE:

              MEMORY
          1st INSTRUCTION     <- PROGRAM COUNTER
          2nd INSTRUCTION
          3rd INSTRUCTION
          4th INSTRUCTION
          5th INSTRUCTION

     The program counter is loaded with the address of the first
instruction.  The processor loads and then executes this instruc-
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tion.  The program counter is then incremented by one so that it
points to the second instruction.  This instruction is fetched and
the cycle is repeated.

     Always remember that the computer cannot tell the differ-
ence between data and instructions.  Whatever the program
pointer points to will be interpreted as an instruction.

TWO AND 3-BYTE INSTRUCTIONS.

     Many instructions require more than one byte.  For instance,
suppose we want to load the accumulator with the 8-bit constant
$FF.  The 6502 has an instruction which will load the accumulator
with an 8-bit constant.  The only problem is how do you specify
the constant?  Why not immediately follow the instruction with the
constant!  Well, this is exactly what's done.  The hex code $A9,
when executed, tells the 6502 to load the accumulator with the
8-bit constant located in the next byte, so the two bytes ($A9,
$FF) instruct the 6502 to load the accumulator with the constant
$FF.  Loading the accumulator with a constant (or load the accu-
mulator immediate, as it's often called) is an example of a 2-byte
instruction.  Rather than using just one byte to perform the oper-
ation, we need two.  Naturally, the program counter is incremented
by two instead of one so that the constant does not get executed
as the next 6502 instruction.
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     In addition to the 2-byte instructions, there are also 3-byte
instructions.  One good example is the "store the accumulator in
an absolute memory location" instruction.  This instruction (which
consists of $8D followed by a 16-bit address) will store the con-
tents of the accumulator at any of the 65,536 different memory
locations available in the 6502 memory space.  For example,
($8D, $00, $10) will store the accumulator at location $1000, and
($8D, $C3, $48) will store the accumulator at location $48C3.

     Remember, whenever a multibyte instruction is encoun-
tered, the program counter is automatically incremented past the
additional data.

     EXAMPLE:

          A9 INSTRUCTION #1  LOAD ACC WIUH $FF
          FF

          8D INSTRUCTION #2  STORE ACC AT LOCATION $1234
          34
          12

          --  ETC.

          -- 

          -- 

          WARNING

Remember, there is nothing sacred about the location of your
program instructions.  The computer cannot differentiate between
data and valid instructions.  In the previous example, if the pro-
gram began at location $1234 we would have loaded the accu-
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mulator with $FF and then proceeded to destroy the first instruc-
tion ($A9 stored at location $1234) by storing a $FF over the top
of the $A9, leaving you with the following code:

          LOC     DATA/CODE
          1234        FF
          1235        FF
          1236        8D
          1237        34
          1238        12
          1239        -- 

          ETC.        ETC.

     With this in mind, be very careful where you store data since
you can easily wipe out your program if you are not careful.



6502 ADDRESSING MODES.

     The 6502 microprocessor utilizes 56 distinct instructions.
Previously it was said that there are about 120 different instruction
codes.  Why the difference?  Well some operations can be carried
out in one of several ways.  For instance, one type of operation
on the 6502 is that of loading the accumulator with an 8-bit value.
The operation is called, "the load the accumulator operation" and
is often abbreviated LDA.  There are several LDA instructions.  You
can load the accumulator with a constant, load the accumulator
with the value contained in one of the 65,536 memory locations,
load the accumulator with an element of an array or string, etc.
All of these operations have one thing in common- the end result
is that the 6502 accumulator is loaded with a new value.  Although
the operation is the same (loading the accumulator) the method
used to load it is different.  Since it is a different operation (so to
speak) on a very low level, the 6502 uses a different opcode for
each variance of the LDA instruction.  These variances on the LDA
instruction are often called, "addressing modes."  Whereas an
instruction tells the computer what to do, the addressing mode
tells the computer where to get the data (or operand).

IMMEDIATE ADDRESSING MODE.

     The immediate addressing mode tells the computer that the
data to be used is an 8-bit constant, which immediately follows
the instruction code.  Remember, the $A9 in one of the previous
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examples, $A9 says, "Load the accumulator with the value con-
tained in the following byte."  This is an example of the immediate
addressing mode.  The instruction could be worded as, "Load the
accumulator with the byte immediately following the instruction
byte."  With this wording the term "immediate addressing mode"
makes a little more sense.  Instructions using the immediate
addressing mode are always two bytes long: one byte for the
instruction and one byte for the immediate data.

ABSOLUTE ADDRESSING MODE.

     Sometimes, rather than loading the accumulator with a con-
stant, we need to be able to load the accumulator with a variable
that is stored in memory.  As with the immediate addressing mode
we need one byte to specify the instruction (LDA or load the
accumulator).  Next, to be able to uniquely specify one of the
65,536 different locations in the 6502 address space, we need a
2-byte address.  This type of addressing mode is called, "absolute
addressing mode" (since we are loading the accumulator from an
absolute memory location).  Obviously this instruction must be
three bytes long: one byte for the instruction and two bytes for the
address.  The actual instruction code for the LDA absolute instruc-
tion is $AD.  This instruction code is always followed by a 2-byte
address; the low-order byte comes first followed by the high-order
byte.  If we wanted to instruct the 6502 to load the accumulator



from memory location $1234, the code sequence to do this would
be: ($AD, $34, $12 or AD3412).  Yes, it does look funny seeing
the 34 before the 12, but get used to it.  You will see this (byte-
reversed order) used all the time on the 6502.

ZERO PAGE ADDRESSING MODE.

     The 6502 incorporates a special form of the absolute
addressing mode known as the "zero page addressing mode."  In
this addressing mode the 6502 loads the accumulator from the
specified memory location, just like the absolute addressing
mode.  The only difference is that the instruction is only two bytes
long: one byte for the instruction and one byte for the address.
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Since eight bits only allow 256 different values you are limited to
256 different addresses.  In the 6502 address space this corre-
sponds to the first 256 locations in the machine (location $00 to
location $FF, also known as 'page zero').  Since the zero page
addressing mode strongly restricts its usage (you're only allowed
to access 1/256th the amount of data possible with the absolute
addressing mode), why should you even bother using it?  The first
part of the answer should be obvious.  The absolute addressing
mode results in 3-byte instructions whereas the zero page
addressing mode uses only two bytes.  You save memory by using
the zero page addressing mode.  The second, and less obvious,
reason is that instructions using the zero page addressing mode
execute faster than instructions using the absolute addressing
mode.  Page zero is often used for variable storage, and the other
memory locations are often used for program, array, and string
storage.

INDEXED ADDRESSING MODE.

     As mentioned previously, the X- and Y-registers are used as
index registers.  An index register is used to access elements of
a small array or a string.  Remember, in integer BASIC, when you
use an array you specify the element of the array by placing an
"index" within parentheses after the variable name (e.g., M(I): I
is the index).  The X- and Y-registers are used in place of the
variable I (or whatever you happen to be using).  For instance, the
instruction code $BD tells the 6502 to load the accumulator from
the absolute memory location specified in the next two bytes
AFTER the contents of the X-register are added to this value.  If
the computer executes the instruction sequence BD 34 12, and
the X-register contains 5, then the accumulator will not be loaded
from location 1234, but rather from location 1239 (1234 + 5).  In
general, if you have an array (containing less than 256 elements)
you can access any element of this array by loading the X-register
with the desired value and then loading the accumulator from the
first element of the array indexed by X.

          NOTE



The Y-register can be used in an identical manner.  Naturally, the
instruction code is changed, but the effect is the same.
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INDIRECT ADDRESSING.

     The indirect addressing mode is rather tricky.  Rather than
using the 2-byte address which follows the instruction, we go to
the address specified and use the data contained in that location
as the low-order byte of the actual address.  To get the high-order
byte of the actual address we must add one to the 16-bit value
following the instruction and go to that address which will contain
the high-order byte of the actual address.  Now that a low- and
high-order byte are obtained, the address is fully specified, and
we can continue on our merry way.  Yes, this description is worth-
less and you do need several examples to demonstrate how
indirect addressing is used.  Rather than give these examples
now, their presentation will be deferred until the addressing mode
is actually used in a program.

INDIRECT INDEXED BY Y

     As with the indirect addressing mode, the indirect indexed
by Y mode is mentioned solely for completeness.  A full discussion
will be presented later in the text.

INDEXED BY X, INDIRECT.

     Again, this discussion must be deferred.

IMPLIED ADDRESSING MODE.

     The implied addressing mode means exactly that--the
instruction itself implies what type of data is to be operated on.
Instructions that use the implied addressing mode are always one
byte long.

ACCUMULATOR ADDRESSING MODE.

     The accumulator addressing mode specifies an operation
upon the accumulator.  The instructions in this class are all one
byte long.
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          NOTE

It may seem that many of the operations in the 6502 should be
considered in the class of accumulator addressing mode instruc-
tions.  The difference between the true accumulator addressing
mode instructions and the other instructions is that the accumu-



lator addressing mode instructions reference only the accumu-
lator.  They do not require any operands in memory.

RELATIVE ADDRESSING MODE.

     The relative addressing mode is used by a group of instruc-
tions known as the branch instructions.  The description of the
relative addressing mode is beyond the scope of this chapter and
will be considered in a later chapter.  Once again it is mentioned
solely for sake of completeness.

ADDRESSING MODE WRAP-UP.

     If this discussion of addressing modes doesn't make much
sense, don't worry about it.  This section was intended only as a
crude introduction to make you aware of the fact that addressing
modes do indeed exist.  The use of a particular addressing mode
will become obvious in the next few chapters.
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                            CHAPTER 4

                           SOME SIMPLE
                          INSTRUCTIONS

NEW INSTRUCTIONS:

     EQU EPZ DFS
     LDA LDX LDY STA STX STY INC DEC
     TAX TAY TXA TYA INX INY DEX DEY

GENERAL.

     Until now, everytime we wanted the computer to perform
some action, we pulled a magic little number out of the hat and
used it as an instruction code.  Unfortunately, there are about 120
different instruction codes.  Trying to memorize all of these would
be mind boggling.  It would certainly be quite a bit nicer if we could
use phrases like, "load the accumulator with the constant $FF,"
or "store the contents of the accumulator at location $1234."  This
idea was so good that several people have indeed done this.  LISA
is an example of a computer program that takes phrases (such
as LDA for load the accumulator) and converts them to one of the
120 or so valid instruction codes.  Programs which do this for you
are called, "assemblers."  Rather than using long phrases, such
as "load the accumulator", short mnemonics were chosen
instead.  Mnemonics are three-character representations of the
desired phrases.  For instance, LDA replaces "load the accumu-
lator," and STA replaces "store the accumulator."  Although you
must take the time to learn these mnemonics, the payoff is rather
good.  When entering a program, you will only have to type three
letters instead of an entire phrase!

ASSEMBLY LANGUAGE SOURCE FORMAT.



     The actual machine language code that the 6502 under-
stands is often called, "object code."  The mnemonics that
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humans understand are often called, the text file, or source code.
Unlike BASIC, which has few restrictions concerning the
arrangement of statements on a line, assembly language has a
very rigid format.  An assembly language source statement is
divided into four sections known as "fields."  There is a label field,
a mnemonic field, an operand field, and a comment field.  Fields
in an assembler are usually separated by at least one blank; often
two or three of these fields are optional.

SOURCE FORMAT:

          LABEL MNEMONIC OPERAND ;COMMENTS

     The label field contains a label that is associated with the
particular source line.  This is very similar to the line number in
BASIC.  All branches and jumps (a GOTO in BASIC) will refer to
this label.  Unlike BASIC, this label is not a number, but rather a
string, usually one to eight characters long beginning with an
uppercase alphabetic character.  Labels should only contain
uppercase characters and digits.

     EXAMPLES OF VALID LABELS:

          LABEL
          LOO1
          A
          MONKEY

     EXAMPLES OF INVALID LABELS:

          1HOLD       (BEGINS WITH "1")
          HELLOTHERE  (LONGER THAN 6 CHARS)
          LBL,X       (CONTAINS ",")

     Labels are not required on every line like line numbers in
BASIC.  Labels are only required when you need to access a
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particular statement.  Labels must begin in column one of the
source line, and there must be a blank between the label and the
following mnemonic.

     As previously mentioned, labels are optional.  If you do not
wish to enter a label on the current line you must be sure that
column one of the source line contains a blank (see the LISA



documentation for furthur details on labels).

MNEMONIC FIELD.

     The mnemonic field follows the label field.  A three-character
LISA mnemonic is expected in this field.  These include instruc-
tions such as LDA, LDX, LDY, STA, ...

OPERAND FIELD.

     The operand field follows the mnemonics field.  The operand
field contains the address and the addressing mode, if required.
If an address appears all by itself the absolute (or zero page, if
possible) addressing mode will be used.  This address can be an
"address expression."  An address expression is similar to an
arithmetic expression one would find in Integer BASIC except that
only addition and subtraction are allowed.  (Some versions of LISA
allow other operators as well.)  For instance, $1000 + $1 will return
the value $1001.  If you had an instruction of the form "LDA
$1000+$1" (LDA stands for load the accumulator), the accu-
mulator would be loaded from the contents of memory location
$1001.  The discussion of address expressions will be considered
in greater detail later in the text.

     To specify a constant (the immediate addressing mode), you
must preceed a 16-bit address expression with either a "#" or a
"/".  If you use the "#", the low-order byte of the address expression
will be used.  If you use the "/", the high-order byte of the address
expression will be used as the 8-bit immediate data.

     The indexed addressing modes are specified by following
an address expression with ",X" or ",Y" depending on whether
you wish to use indexed by X or indexed by Y addressing.  If
possible, the zero page form will be used.

     To specify the implied addressing mode, or the accumulator
addressing mode, you must leave the operand field blank.  Any-
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thing but a comment (see the next section) will produce an error.
The syntax for the indirect, indirect indexed by Y, and indexed
by X indirect will be considered later.

COMMENT FIELD.

     Following the operand field you can optionally place a
remark on the same line as the instruction.  Just make sure that
the operand field and the comment field are separated by at least
one blank, and also make sure that your comment begins with
the special character ";" (semicolon).

INTRODUCTION TO REAL INSTRUCTIONS.

     So far, we've only discussed assembly language in a very



general way, making use of relatively few concrete examples.
Now, let's focus our attention on some of the real commands at
our disposal.

LOAD GROUP.

     There are three distinct instructions in the load group cate-
gory.  They are: LDA (load accumulator), LDX (load the X-regis-
ter), and LDY (load the Y-register).  These instructions go to the
location specified in the operand field, make a copy of the data
stored there, and then enter this data into the specified register.

     To load the accumulator with the data (contained in one of
the 6502's 65,536 different memory locations) simply follow the
LDA instruction with the address of the desired memory cell.

          LDA $1FA0 -- LOADS ACC FROM LOCATION $1FA0.

     Note that the content of the specified memory location is not
altered.  A copy is made and placed in the accumulator; the mem-
ory location's data is not altered.  In general, LDA $nnnn (where
nnnn is a one to four digit hex number) will load the accumulator
from location $nnnn.

     Examples:

          LDA $11F0 - LOADS THE ACC FROM LOCATION $11F0
          LDA $127F - LOADS THE ACC FROM LOCATION $127F
          LDA $0    - LOADS THE ACC FROM LOCATION $0000
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     Loading a constant into the accumulator is just as easy.
Simply preceed the constant with the "#" or the "/" depending on
whether you wish to load the low-order eight 8 bits or the high-
order eight bits of the 16-bit expression given in the operand field.

     Examples:

          LDA #$1000 - Loads the ACC with the value $00
                       ($00 is the low-order byte of
                        $1000, the high-order byte,
                        $10, is ignored).

          LDA #$FF   - Loads the ACC with the value $FF.
                       $FF is really $00FF.  The high-order
                       byte in this case is $00, once
                       again, it is ignored.

          LDA #$0    - Loads the ACC with the value $0.
                       $0 is really $0000, whose low-
                       order (as well as high-order
                       byte) is zero.

          LDA /$1000 - Loads the ACC with $10.  $10 is



                       the high-order byte of the value
                       $1000.  The low-order byte ($00)
                       is ignored.

          LDA /$FF   - Loads the ACC with $00.  $FF is
                       really $00FF whose high-order
                       byte is $00.  The low-order
                       byte ($FF) is ignored.

          LDA /$0    - Loads the ACC with $00.  Both the
                       low- and high-order bytes of $0
                       (same as $0000) are $00.

     In all of the previous examples, the operation performed was
that of loading the accumulator.  You can load the X-register or
the Y-register in a similar manner simply by substituting the LDX
(Load the X-register) or the LDY (Load the Y-register) instruction
in place of the LDA instruction.  There are several other methods
used in loading registers (i.e, different addressing modes) other
than the ABSOLUTE and IMMEDIATE addressing modes described
here.  These methods will be considered in later chapters.

STORE INSTRUCTIONS.

     Now that we can move data into the accumulator, let's dis-
cuss how to store data from the accumulator, X- or Y-register into
external memory.  The 6502 store instructions provide us with this
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capability.  There are three store instructions: STA (store the
accumulator), STX (store the X-register), and STY (store the Y-
register).  To store the register information at some memory loca-
tion simply follow the store instruction with the address of the
desired storage location.

     Examples:

          STA $1000 - Stores a copy of the contents of
                      the accumulator at location $1000.
                      The contents of the ACC are not
                      disturbed .

          STA $2563 - Stores the contents of the accumulator
                      at location $2563.

          STA $FF   - Stores the contents of the accumulator
                      at location $FF.

     By using the STX and STY instructions, we can store data
from the X- and Y-registers in a similar manner.

          STX $1500 - Stores a copy the contents
                      of the X-register at location
                      $1500 in memory.



          STY $220  - Stores the contents of the
                      Y-register at location
                      $220 in memory.

     Remember, the store instructions do not alter the contents
of the register being stored; only the memory location where the
data is being stored.

     Now that we know a few basic commands, let's write a simple
assembly language program.  This program will simply transfer
the data contained in locations $1000 and $1001 to locations
$2000 and $2001 respectively.  After this program is executed,
location $2000 and $1000 will contain the same value and loca-
tions $1001 and $2001 will contain the same value.  The (seem-
ingly) easiest way to do this is to execute an instruction sequence
"LET $2000 EQUAL $1000, and LET $2001 EQUAL $1001."
Unfortunately, there is no memory transfer function which will
perform this task for us.  What we can do, however, is to perform
this action in an indirect manner.  Instead of a straight memory
transfer, we can load the accumulator with the data contained in
location $1000 and then store the accumulator at location $2000.

                               4-6

*****************************************************************

This process can then be repeated for locations $1001 and
$2001.  The final assembly language program is:

          LDA $1000
          STA $2000
          LDA $1001
          STA $2001

     All data transfers must be routed through one of the 6502
registers, and generally we will use the accumulator since it is the
general purpose register on the 6502.

DATA TRANSFER INSTRUCTIONS.

     Now that we know how to exchange data between a register
and memory, what about transfering data between registers?  The
6502 has the capability to transfer data from the accumulator to
the X- or Y-registers and likewise from the X- or Y-register to the
accumulator.  There are also two instructions which allow the 6502
to transfer data from the X-register to the Stack Pointer and to
transfer data from the Stack Pointer to the X-register.  The mne-
monics for these instructions are:

          TXA - Transfers data from the X-register to ACC.
          TYA - Transfers data from the Y-register to ACC.
          TAX - Transfers data from the ACC to the X-register.
          TAY - Transfers data from the ACC to the Y-register.
          TXS - Transfers data from the X-register to SP.
          TSX - Transfers data from SF to the X-register.



     You will notice that there are no explicit instructions for trans-
fering data from the X-register directly to the Y-register and vice
versa.  Should this need arise two instruction sequences can be
used:

          Transfer X to Y     Transfer Y to X
               TXA               TYA
               TAY               TAX

              - OR -            - OR - 

               STX $nnnn         STY $nnnn
               LDY $nnnn         LDX $nnnn
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     The register transfer instructions require no operands.  In
fact, if an attempt is made to place an operand after the transfer
mnemonic, an error message will be displayed.  This is an exam-
ple of the 'implied' addressing mode.  The instruction itself implic-
itly defines the location of the data being operated upon (the
registers).

REGISTER INCREMENTS AND DECREMENTS.

     Being able to load and store data is not particularly inter-
esting by itself, so now we are going to discuss some instructions
which operate on the data in a register.  The first four instructions
we will study in this category are the X- and Y-register increment
and decrement instructions (increment means to add one; dec-
rement means to subtract one).

          INX  - Takes the value contained in the X-register,
                 adds one, and leaves the result
                 in the X-register.

          INY  - Takes the value in the Y-register, adds one,
                 and leaves the result in the Y-register.

          DEX  - Takes the value contained in the X-register,
                 subtracts one, and leaves the result
                 in the X-register.

          DEY  - Takes the value in the Y-register, subtracts
                 one, and leaves the result in
                 the Y-register.

     The above instructions are handy for simple register arith-
metic.  Since (as you will soon find out) most of the time we are
adding one to or subtracting one from these registers, the incre-
ment and decrement instructions are very useful.

     There is one slight problem with the increment and decre-
ment register instructions.  What happens when you try to incre-
ment a register which contains $FF (the maximum value possible



for an 8-bit register) or decrement $00 (the smallest value pos-
sible for an 8-bit register)?  When a register containing $FF is
incremented, the computer will "wrap-around" and end up with
the value $00.  Likewise, whenever you decrement the value $00
you will end up with $FF.
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     Like the transfer instructions, INX, INY, DEX, and DEY are
implied addressing mode instructions and require no operands.

INCREMENT AND DECREMENT
INSTRUCTIONS.

     The increment (INC) and decrement (DEC) instructions are
special.  They operate directly on memory without the need to go
through the accumulator, X-, or Y-registers as an intermediate
step.  These two instructions increment and decrement values at
specified memory locations.

     EXAMPLES:

          INC $2255 - Takes the value at location $2255,
                      adds one, and then leaves the
                      result at location $2255

          DEC $15   - Takes the value contained at location
                      $15, subtracts one, and then
                      leaves the result in location $15.

     The INC and DEC instructions are not implied addressing
mode instructions.  They require an absolute or zero page
address, like the load and store instructions.  Keep in mind, you
are limited to eight bits; as such, "wrap-around" will occur if you
attempt to increment $FF or decrement $00.

LABELS AND VARIABLES.

     Until now, everytime we wanted to use a variable, the actual
memory address of that variable had to be specified.  This is
inconvenient (This situation is similar to using all POKE instruc-
tions instead of variable names in BASIC).  For instance, suppose
we have a value giving the X-coordinate of a point we wish to plot
on the screen.  XCOORD would be much more meaningful than
$800.  It would be nice to be able to write LDA XCOORD instead
of 'LDA $800.' Labels allow us to do exactly this!  Somewhere in
our program we define a label to be equal to some value (an
address).  Thereafter, whenever that label is referenced, the
address is used instead.  In the previous example you would
equate the value $800 with the label XCOORD, then you could
write LDA XCOORD, and the assembler would automatically sub-
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stitute $800 for you!  A label may be used in place of an address.
Remember, the assembler simply substitutes the assigned value
upon encountering a label.  LDA XCOORD does not mean load
the accumulator with the value XCOORD, but rather, load the
accumulator with the value contained in the memory location
$800.  Labels allow you to assign more meaningful names to
memory locations.

     There is one catch however.  Somewhere within the program
you must equate the value with the label.  How is this accom-
plished?  Very simply.  To equate a label with an address you use
the EQU pseudo opcode.  First, what is a pseudo-opcode?  A
pseudo opcode is simply an instruction to LISA embedded within
your assembly language source file.  When encountered, a
pseudo opcode tells LISA to do something special with the fol-
lowing data.  A pseudo opcode generally does not emit any
instruction code for use by the 6502 microprocessor.

     The EQU pseudo opcode has the form:

          LABEL  EQU  <value>

     Both the label and the value (an address expression to be
described later) are required.  The EQU pseudo opcode tells LISA
to take the label and store it with its corresponding address value
in the assembler symbol table.  Later, when you use the label in
your program, LISA looks up the label in the symbol table and
substitutes the address for the label.  The assembler remembers
ugly things like addresses for you, and all you have to do is
remember which variable name (or label) you used.

     EXAMPLES OF LABELS:

          XCOORD  EQU $800   - XCOORD is assigned the value $800
          LABEL   EQU $1000  - LABEL is assigned the value $1000

                  LDA XCOORD - Same as LDA $800
                  STA LABEL  - Same as STA $1000

          CONST   EQU $FF22  - CONST is assigned the value $FF22

                  LDA #CONST - The value $22 is loaded into
                               the acc ($22 is the low order
                               byte of CONST).
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                  LDA /CONST - The value $FF is loaded into
                               the acc ($FF is the high order
                               byte of CONST).

                  INC XCOORD - Increments the value at location
                               $800.



                  DEC LABEL  - Decrements the value at location
                               $1000

     When a label is defined using the "EQU" pseudo opcode,
absolute addressing will always be used (even if the value is less
than $FF).  In order to use zero page addressing another pseudo
opcode (equate to page zero) must be used.  This pseudo opcode
is EPZ and it has the same syntax as EQU.

     EXAMPLE:

          LABEL  EPZ  <value>

               <value> must be less than or equal to $FF.

     Sometimes, when defining a variable, even worrying about
where the data should be stored in memory is too much of a
bother.  It would be nice if one could say, "Hey, I need a one-byte
variable, but let LISA worry about its actual location in memory."
The DFS (or define storage) pseudo opcode will do exactly that
for you.  The DFS pseudo opcode uses the syntax:

          LABEL  DFS  <value>

     Unlike EQU the value does not specify where the data is to
be stored, but rather how many bytes you wish to reserve for your
variable.  Usually this value will be one or two.

     DFS simply uses the current code location as the address
for the variable.  Because of this you must be careful to place the
DFS pseudo opcode in your program where it will not be executed
as an instruction.  We'll discuss how you do this later on.

EXPRESSIONS IN THE OPERAND FIELD.

     Suppose in our previous example that XCOORD was a 16-
bit value located in bytes $800 and $801.  How can we access
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these locations using our label scheme?  LISA allows simple arith-
metics to be used in the operand field.  The operators "+" and
"-" are allowed.

     EXAMPLE:

          XCOORD EQU $800
                 LDA #$0       -CLEAR THE ACCUMULATOR
                 STA XCOORD    -CLEAR LOCAUION $800
                 STA XCOORD+$1 -CLEAR LOCATION $801

Some versions of LISA also allow multiplication, division, and
some logical operations in address expressions.  For more details
consult the LISA reference manual.
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                            CHAPTER 5

                        ASSEMBLY LANGUAGE

NEW INSTRUCTIONS:

     BRK JMP BCC BCS BEQ BNE BMI CLD
     BPL BVC BVS BLT BGE BFL BTR SED
     CMP CPX CPY CLC CLV SEC CLI SEI
     END

GENERAL.

     The load and store instructions discussed in the previous
chapter are examples of sequentially executing instructions.  After
a load or store is executed, the computer proceeds to the next
instruction and continues processing there.  As in BASIC, we often
need to interrupt this sequential program flow and continue
execution elsewhere.  Unlike BASIC, we do not have a GOTO,
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FOR/NEXT, or IF/THEN instruction at our disposal.  In their place
the 6502 microprocessor has a group of jump and branch instruc-
tions.

     Finally, we need to be able to tell the computer to stop and
return control to the user.  There are several methods of achieving
this goal.  The easiest and most straight-forward method is prob-
ably the BRK, or break instruction.  When executed, the BRK
instruction will beep the bell and relinquish control to the Apple
monitor.  A nice feature of the BRK instruction is that it prints the
contents of the 6502 registers before returning to the monitor.
This is a very simple form of output which we will make use of
until more sophisticated I/O routines are possible.

EXAMPLE PROGRAM.

     Let's try writing a program using loads and the BRK instruc-
tion.  First, access LISA (see its accompanying documentation for
details) and proceed as follows:

    1) When the prompt (!) is displayed, type INS and depress
       return (CR) key.
    2) Response-LISA will display a 1 on the next line.
    3) Enter a space, type LDA #$0 and depress CR.
    4) Response-LISA will display a 2 on the next line.
    5) Enter a space, type LDX #$1 and depress CR.
    6) Response-LISA will display a 3 on the next line.



    7) Enter a space, type LDY #$2 and depress CR.
    8) Response-LISA will display a 4 on the next line.
    9) Enter a space, type BRK and depress CR.
   10) Response-LISA will display a 5 on the next line.
   11) Enter a space, type END and depress CR.

The execution of step 11 informs LISA that the end of the program
has been reached.

   12) Response-LISA will display a 6 on the next line.

Since you have completed source code entry:

   13) Type a control-E as the first character of line six and
       depress the return key.
   14) Response--The ! prompt will be displayed on the next
       line.
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     If all has gone well the display will appear as indicated below:

          !INS
             1  LDA #$0
             2  LDX #$1
             3  LDY #$2
             4  BRK
             5  END
             6

     LISA is now waiting for your next command.  Before any
program can be run it must be assembled.  To assemble your
program, simply type ASM when you get the "!" prompt back.
LISA will flash an assembly listing on the screen while the pro-
gram is being assembled.  Ignore this for now.  When you get the
"!" prompt back, type BRK (this is a LISA command as well as a
6502 instruction) which will place you in the Apple monitor.  To run
your program type 800G when you get the monitor '*' prompt
character.  Immediately after pressing return, the speaker should
beep and the screen should look like:

          0808- A=00 X=01 Y=02 P=30 S=F0

     (The value after "S=" may be different.)  The 0808 is the
address in memory of the BRK instruction PLUS TWO.  This means
that the BRK instruction is really located at memory location $806.
The reason for having two added to the true value will be dis-
cussed in the section on debugging your programs.

     The next five entries on the line are the values contained in
the accumulator, X-register, Y-register, PSW, and stack pointer
when the BRK occurred.  As mentioned previously, we will use
the fact that the BRK instruction prints these registers to perform
simple I/O.  In essence, the BRK instruction is very similar to the
END and STOP instructions in BASIC.



JMP INSTRUCTION.

     The 6502 JMP (jump) instruction is an unconditional branch.
It is used in a manner identical to the GOTO instruction in BASIC.
The difference is that you specify an absolute memory address
instead of a BASIC line number.  The following infinite loop con-
tinually copies location "J" into location "I" and then sets location
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J to zero (obviously, after the first time through, location I will also
contain zero).

     EXAMPLE:

          PROGRAM LOC.   STATEMENT
               $800  I    EQU $0
               $800  J    EQU $1
               $800       LDA J
               $803       STA I
               $806       LDA #$0
               $808       STA J
               $80B       JMP $800
               $80B       END

(Note that the EQU and END statements do not take up a program
location.)

     The JMP instruction is always three bytes long: the JMP
instruction code, followed by the low-order and then high-order
byte of the jump to address.

     Obviously, using absolute addresses, as in the previous
example, presents a problem.  First, at the time the text file is
created, the actual destination address of the JMP instruction is
not usually known.  To overcome this difficulty we use labels as
the destination address of the JMP instruction, much like we used
labels in the load and store instructions.  Unfortunately, using
labels seems to be a matter of simply delaying the inevitable.
After all, if a label is used it must be declared using the EQU,
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EPZ, or DFS pseudo opcodes, right?  Not always.  If a label
appears on the same line as an instruction, and it begins in col-
umn one of the source line, then the address of that instruction
will be used as the value equated to the label.  The code sequence
presented previously can be replaced by:

          I      EQU $0
          J      EQU $1



          LABEL  LDA J
                 STA I
                 LDA #$0
                 STA J
                 JMP LABEL
                 END

and the assembler will worry about where LABEL is supposed to
be.

     You will note that this is even easier to use than the GOTO
in BASIC because you don't have to worry about using sequential
line numbers, especially when you are branching forward.  The
assembler detects a label on the current line by checking column
one.  If column one contains an uppercase alphabetic character,
the following characters (up to a space or ":") are assumed to be
part of the label.  You must separate the label and the mnemonic
field by at least one space.  Also (as mentioned in a previous
chapter), if a label does not appear on the current line, there must
be a blank in column one.  If you do not place a blank in column
one, the assembler will treat the mnemonic as a label and attempt
to use the operand (if any) as your mnemonic.  The result?  An
illegal mnemonic error most likely, so always remember to place
a space in column one if a label does not appear on the current
line of text.  One final remark: since LISA detects a label by check-
ing column one of the current source line, labels such as LDA,
LDX, INC, or any other 6502 mnemonic are perfectly valid.  For
clarity's sake however, you should avoid mnemonic names as
statement labels.

PROCESSOR STATUS REGISTER (P or PSW).

     The 6502 instruction set does not include an "IF/THEN" or
"FOR/NEXT" instruction.  Conditional testing is accomplished by
testing bits in the processor status register.

     The processor status register is unlike the other registers in
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the 6502 processor.  Rather than being an 8- or 16-bit register
whose data is treated as eight or 16 bits of information, the pro-
cessor status register is simply a collection of eight bits where
each bit is treated separately (actually only seven bits are used;
one of the bits is ignored).

    Four of these bits are set by the result of the previous instruc-
tion.  For instance, there is a zero flag in the P-register which is
set if the last result was a zero and reset otherwise.  Two of the
remaining flags are explicitly set or cleared by 6502 instructions,
and one of the flags is set if the last interrupt serviced was due
to the execution of the BRK instruction.

BREAK FLAG (B).



     The break flag (bit number four in the processor status reg-
ister) is set only if the last interrupt detected was due to the
execution of the BRK instruction.  You will notice that whenever
you execute a break instruction, the P-register is usually dis-
played as P=30 (sometimes other values will creep in).  If you
convert this hex number to binary, you will find that bit number
four is always set, because the last instruction executed was a
BRK instruction.

DECIMAL FLAG (D).

     The decimal flag (bit number three in the PSW) is set only
by the SED (set decimal) instruction.  It can be cleared by the CLD
(clear decimal flag) instruction.  The decimal flag is used to deter-
mine what type of arithmetic will be used by the 6502 micropro-
cessor.  More information will be given on the decimal flag in the
next chapter.

INTERRUPT DISABLE FLAG (I).

     Interrupts are beyond the scope of this book.  For complete-
ness however, it should be mentioned that one of the flags in the
processor status register is used to prevent interrupts from occur-
ring.  This flag (bit number two in the PSW) can be set by the SEI
instruction, and it can be cleared with the CLI instruction.  The
6502 IRQ line is disabled when the interrupt disable flag is set.
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CONDITION CODE FLAGS (N,V,Z,C).

     The condition code flags are the flags affected by the normal
operation of the 6502 microprocessor.  The Z (or zero) flag is set
when the last operation executed produced a zero result.  For
instance, loading the accumulator with zero sets the zero flag;
decrementing a register when that register previously contained
one gives a zero result and, as such, sets the zero flag; incre-
menting $FF results in a wrap-around to zero giving a zero result.
There are no explicit instructions for setting or clearing the zero
flag.  If you want to set it, simply load a register with zero.  If you
want to clear it, simply load a register with a value other than
zero.  Sneaky trick: If you can't afford to bother the contents of
any of the 6502 registers, simply increment a memory location
known to contain $FF.  Location $FFC3 in the Apple monitor is
such a location (both for the old monitor and the new Auto-start
ROM).  If you issue the instruction "INC $FFC3," the zero flag will
be set.  Likewise, to reset the zero flag without affecting any of the
6502 registers, simply increment a location which does not con-
tain $FF.  Location $F800 is a good choice.  The Z flag resides in
bit number one of the PSW.

     The 6502 N flag is set if the last result was a negative value.
Wait a second!  All along we've been saying that there are no
negative values in the 6502 registers.  Well, if you remember the
section on two's complement, we used the high-order bit as a sign



flag.  If it was set, the number was negative.  If it was reset, the
number was positive.  We will discuss signed arithmetic later.  Here
it is useful to note that the negative (N) flag will contain whatever
was in bit number seven of the previous result.  This is sometimes
useful in itself, just to be able to check the status of one of the
bits in a memory location.  The N flag resides in bit number seven
of the PSW.

     As with the zero flag, there are no explicit set or clear instruc-
tions associated with the N flag.  To set the N flag simply increment
any location which contains a value in the range $7F to $FE.  The
result of such an increment will always be negative i.e., bit number
seven of the result will always be one.  Location $F804 in the
Apple monitor is a good choice.  To reset the negative flag simply
increment a memory location which contains a value in the range
$00 to $7E, or $FF.  The result of such an increment is always
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positive i.e., bit seven of the result will always be zero (memory
location $F800 in the Apple monitor is a good choice).

     The carry (C) flag in the 6502 microprocessor is affected by
additions, subtractions, comparisons, and logical operations.  It
can also be explicitly set or cleared with the SEC (set carry) and
CLC (clear carry) instructions.  The carry flag resides in bit number
zero of the processor status register.  We will return to the discus-
sion of the carry flag when the discussion of the aforementioned
operations is taken up.

     The last flag in the processor status register is the overflow
(V) flag.  This flag is used for signed arithmetic and is affected
only by the addition, subtraction, and bit test operators.  It can be
explicitly cleared with the CLV instruction but there is no "set
overflow flag" instruction.  This flag resides in bit number six of the
processor status word.  We will discuss its use when signed arith-
metic is considered.

     The unused bit in the processor status word is bit number
five.  Usually it contains a one (i.e, it's set), but you are not guar-
anteed this.  None of the 6502 instructions access this flag.

     You might try running the following programs noticing their
affects on the P-register:

          PGM1:
                  LDA #$0
                  BRK
                  END
          PGM2:
                  LDA #$1
                  BRK
                  END
          PGM3:
                  CLC



                  BRK
                  END
          PGM4:
                  SEC
                  BRK
                  END
          PGM5:
                  LDA #$80
                  BRK
                  END
          PGM6:
                  LDA #$7F
                  BRK
                  END
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BRANCH INSTRUCTIONS (6502).

     Now you know that certain operations affect the flags in the
processor status register.  Big deal!  How does this help us simu-
late the "IF/THEN" Statement in BASIC?  By themselves the status
flags are not very useful in this capacity.  Fortunately, the 6502
allows us to test each of the condition code flags with some
branch instructions.

     A branch instruction is very similar to a JMP instruction.
Under certain circumstances it causes program flow to continue
at a different location.  Unlike the JMP instruction, which is an
unconditional branch, the branch instructions do not always jump
to the specified location.  Before a branch is made, one of the
flags in the processor status word is tested and, if the test is met,
then (and only then) will the branch be taken.  Should the test fail,
the program continues executing at the next instruction, just like
the IF/THEN in BASIC.

     Using the branch instructions we can test any of the condi-
tion code flags to see if they are set or cleared.  The allowable
branches are:

          BCC - Branch if the carry flag is clear.
          BCS - Branch if the carry flag is set.
          BEQ - Branch if the zero flag is set.
          BNE - Branch if the zero flag is clear.
          BMI - Branch if minus (N=1).
          BPL - Branch if plus  (N=0).
          BVS - Branch if overflow is set (V=1).
          BVC - Branch if overflow is clear.

Just as with the JMP instruction you must specify an address (or
label) in the operand field.

     EXAMPLE:

                  LDA #$0



                  BEQ LBL1
          LBL2    LDA #$FF
          LBL1    BEQ LBL2

     In this example the accumulator is loaded with the value
zero.  This sets the zero flag which causes the following branch
to be taken.  At LBL1 there is another branch if equal to zero
instruction.  Since we have not modified any registers or memory
locations, the zero flag has not had a chance to be affected so
the branch will be taken.  This leads us to LBL2 where we load
the accumulator with the value $FF.  The next instruction (at loca-
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tion LBL1) tests the zero flag.  Since the last result obtained was
$FF (from the LDA instruction), this branch will not be taken and
the program will fall through to the next instruction after LBL1.

     If you would like to test a memory location to see if it is zero,
and increment it if it is zero, you could use the following code:

         LDA $1F    ;GET THE VALUE CONTAINED IN LOCATION $1F
         BNE LBL    ;IF IT IS NOT ZERO BRANCH TO "LBL".
         INC $1F    ;ADD ONE TO THE VALUE AT LOCATION $1F
     LBL ---        ;NEXT INSTRUCTION
         ETC.

LOOPS.

     One of the more powerful features of a computer is it's ability
to repeat a section of code over and over for a specified number
of times.  This technique is called looping.  In BASIC you might
use the "FOR/NEXT" loop to accomplish this task.  In assembly
language there is no "FOR/NEXT" loop so this function has to be
synthesized.

     Possibly the easiest way to synthesize a loop is to load a
memory location with an initial value and then decrement the
memory location until it becomes zero.  By using the BNE instruc-
tion you can cause the body of the loop to be executed until the
memory location becomes zero.
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     As an example, suppose you wanted to add 10 to the vari-
able J.  Since we have not yet discussed addition on the 6502 we
will have to use the increment instruction.  Since INC only adds
one to a memory location, we will have to repeat this instruction
10 times.  We could simply type ten INC J instructions in a row,
but this would be somewhat inefficient.  Instead, let's store 10 in
some memory location (e.g. I) and then set up a loop whereby
we increment J ten times.  The actual program to do this could be:



     I   EQU 0
     J   EQU 1
         LDA #!10    ;INITIALIZE I TO 10
         STA I
         LDA #$0     ;INITIALIZE J TO 0
         STA J
     LP  INC J       ;NOW, INCREMENT J 10 TIMES
         DEC I
         BNE LP
         LDA J       ;LOAD J SO WE CAN DISPLAY IT
         BRK         ;BREAK AND DISPLAY J (IN THE ACC)
         END

     A "step size" of minus one is not always convenient, not to
mention that we can only end our loop when I becomes zero.  To
learn how to alleviate this problem, read on...

COMPARISONS.

     Unfortunately, in the real world we need to be able to test
other things besides just our condition code flags.  For instance,
sometimes it would be nice if we could determine whether or not
I=5,or possibly if (X=6) AND (J<=(Ix5+2)) OR (L=M).  Other
times we might want to have a loop with an indexing variable
which is initialized to one and is incremented until it becomes
some other non-zero value such as 10.  In order to perform these
types of operations, we will have to use the 6502 compare instruc-
tions.

     The CMP (compare to accumulator) instruction compares
the memory operand specified against the accumulator.  How is
the comparison made?  The data in the operand field is subtracted
from the accumulator.  The PSW flags are set according to the
result obtained and then the difference obtained from the sub-
traction is discarded.  After the compare instruction, both the
accumulator and the memory operand contain their original
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values.  So what good is the CMP instruction if the results are
lost?  Even though the result of the subtraction is not kept around,
the condition code flags are set, depending upon the status of the
subtraction.  If the contents of the accumulator equals the contents
of the specified memory location, the result of the subtraction will
be zero.  You can then use the BEQ branch instruction immedi-
ately after a compare to test for equality (doesn't BEQ, branch if
equal, make a little more sense now?).  Likewise, if the contents
of the accumulator do not equal the data contained in the spec-
ified memory location, the zero flag will be reset, and you can use
the BNE (branch if not equal) to test for this condition.

     The N and C flags are affected in a reverse fashion.  If the
C flag is set or the N flag is clear, the value in the accumulator is
greater or equal to the contents of the specified memory locations.



If the N flag is set or the C flag is clear, the value in the accu-
mulator is less than the contents of the specified memory location.
These tests are so useful that two instructions have been added
to LISA's repertoire: BGE (for branch if greater than or equal to)
and BLT (for branch if less than).  These two instructions generate
the same machine code as BCS or BCC respectively.  Why have
two mnemonics which mean the same thing?  For the same rea-
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son you program in assembly language instead of machine lan-
guage: these extra mnemonics are easier to remember when
testing for the greater than or equal to and the less than conditions.

     The overflow flag (V) is not affected by the compare instruc-
tion, so the use of the BVC or BVS instructions after a compare
is futile.

     You can also compare the X- and Y-registers against some
memory operand by using the CPX and CPY instructions respec-
tively.  The same condition code flags are set, and you can use
the branch instructions to test for the same conditions as with the
CMP instruction.

     One thing you have probably noticed is the lack of BGT
(branch if greater than) and BLE (branch if less than or equal)
instructions.  These instructions are simply not available on the
6502 microprocessor.  Even though they are not available as dis-
crete instructions, they may be synthesized by using the BEQ,
BNE, BLT, and BGE instructions.  Suppose you wanted to com-
pare I with J and jump to LBL if I is less than or equal to J.  This
could be accomplished with the following code:

          LDA I
          CMP J
          BLT LBL
          BEQ LBL

     If I is less than J, the first branch encountered will be taken;
if I is equal to J, the first branch will not be taken, but the second
branch will be taken.  If I greater than J, then neither branch will
be taken, and the program will simply fall through.

     Testing for the greater than function is only slightly more
difficult.  To compare I with J and branch to LBL if I is greater than
J, you could use the code:

          LDA I
          CMP J
          BEQ EQL
          BGE LBL
      EQL --- 
          ETC.

     In this example I is compared with J.  If they are equal, I



cannot be greater than J so a branch around the following BGE
instruction is made.  If I does not equal J, then it can only be less
than or greater than J.  If I is greater than J, the branch to location
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LBL will be taken; if I is less than J, the program will simply fall
through to the instruction at location EQL.

     More efficient methods of simulating the BGT and BLE
instructions will be considered later.

IF/THEN STATEMENT SIMULATION.

     The IF/THEN statement in BASIC (or Pascal for that matter)
has the form:

          IF <LOGICAL EXPRESSION> THEN <STATEMENT>

where <STATEMENT> gets executed if and only if the logical
expression is TRUE.  For instance, the BASIC statement IF X>= 7
THEN Y=0 would set Y to zero if and only if X is currently greater
than or equal to seven.  To simulate the IF statement in assembly
language you would use the opposite type branch to jump around
the statement to be executed.  As an example, if you wanted to
convert the previous BASIC statement to assembly language, you
would use the code sequence:

              LDA X
              CMP #$7
              BLT LBL
              LDA #$0
              STA Y
          LBL --- 
              ETC.

     In this example, if X is greater than or equal to seven, the
program simply drops through the branch instruction and sets Y
to zero.  If X is less than seven, the branch if less than instruction
causes the code which sets Y to zero to be skipped.

     Naturally, a block of instructions can be executed by placing
these instructions between the branch instruction and the target
label of that particular branch.

FOR/NEXT LOOP REVISITED.

     As mentioned previously, it would be nice if we could end
our loops at some value other than zero.  Now that we have the
CMP instruction under our belts we can do just that!  If you wish
to start your loop index variable with the value $1 and increment
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it until 10 is reached you could use the following code:

               LDA #$1
               STA I
          LOOP LDA I
               CMP #!10
               BEQ LBL1
               BGE LOPX
          LBL1:

          ;NOTE: The normal code within your loop body goes here.

               INC I
               JMP LOOP
          LOPX BRK
               ETC.

  If you would like a step size of two, simply increment I twice
before jumping to LOOP.  One last improvement which can be
made is in the testing process.  Since we want to test I to see if
it is greater than 10, we must synthesize the BGT branch using
the BEQ and BGE branches.  One other method of doing this is
to test to see if I is greater than or equal to 11.  Since we have a
BGE branch, this will save us some code.  The resulting program
would be:

                  LDA #$1
                  STA I
          LOOP    LDA I
                  CMP #$B  ;$B = 11 DECIMAL
                  BGE LOOPX

          ;NORMAL LOOP BODY GOES HERE

                  INC I
                  JMP LOOP
          LOOPX   BRK
                  ETC.

     This small simplification makes life much easier for us.

     - TWO FINAL WARNINGS - 

     Up to this point our discussion has concerned itself with
unsigned values.  Signed comparisons, which will be considered
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later, follow a completely different set of rules.  BE AWARE OF
THIS.

     Also, in the discussion of the branch instructions, it was
implied that you could branch anywhere in memory.  This is not



the case.  Branches use a special addressing mode called, "rel-
ative addressing."  Unlike the JMP instruction which is followed by
a 16-bit absolute address, the branch instructions are followed by
a one-byte displacement.  This displacement is added to the
address of the instruction which follows the branch instruction to
give an address which is in the range -126 to +129 bytes from
the beginning of the branch instruction.

     What does this mean to your program?  Usually nothing,
since most branches fall within this range.  Once in a great while
a branch will be out of this range and the assembler will give you
a "branch out of range" error message.  Since we cannot increase
the range of the branch instruction, another method must be used
to correct this problem.  Simply replace the branch instruction with
the opposite type branch (e.g., if a BEQ is out of range, use a
BNE branch) and use the strange looking address of "*+$5" for
your operand.  Immediately after the branch instruction, enter a
JMP instruction using the address of the original branch.

     First, what does "*+$5" mean?  Whenever a 6502 assem-
bler encounters the asterisk in the operand field it will substitute
the address of the beginning of the current instruction for the '*'.
The "*+$5" means add five to the address of the branch instruc-
tion and go there if the condition is satisfied.  Since the branch
instruction is two bytes long and the following JMP instruction is
three bytes long the branch to "*+$5" will branch to the instruc-
tion following the JMP instruction.

     EXAMPLE: BEQ LBL is out of range, fix it.

          Simply substitute:

               BNE *+$5
               JMP LBL

     If the last operation set the zero flag, the program will drop
through to the JMP instruction and then jump to location LBL.  If
the zero flag was not set after the last operation, a branch will
occur to the next instruction after the JMP instruction.  This effec-
tively simulates a "LONG BRANCH IF EQUAL" to location LBL.
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          A Table of Branches and the Long Branch Form

          IF THIS BRANCH
          IS OUT OF RANGE     USE THIS
          ---------------     -------- 

              BEQ LBL         BNE *+$5
                              JMP LBL

              BNE LBL         BEQ *+$5
                              JMP LBL



              BCC LBL         BCS *+$5
                              JMP LBL

              BCS LBL         BCC *+$5
                              JMP LBL

              BVC LBL         BVS *+$5
                              JMP LBL

              BVS LBL         BVC *+$5
                              JMP LBL

              BMI LBL         BPL *+$5
                              JMP LBL

              BPL LBL         BMI *+$5
                              JMP LBL

              BGE LBL         BLT *+$5
                              JMP LBL

              BLT LBL         BGE *+$5
                              JMP LBL

              BTR LBL         BFL *+$5 (SEE THE NEXT SECTION)
                              JMP LBL

              BFL LBL         BTR *+$5
                              JMP LBL

     The asterisk can be used in other address expressions as
well as the branch instructions, however its use is not really rec-
ommended.

                              5-17

*****************************************************************

TESTING BOOLEAN VALUES.

     Remember the values true and false?  Often within a pro-
gram you will use certain variables to hold flags for use in other
parts of the program.  Since the use of such Boolean variables
occurs often, it would be nice to define the Boolean values TRUE
and FALSE.  As per the discussion in Chapter 2, we will let FALSE
be represented by the value $00 and TRUE by the value $01.
Now we can use the BEQ and BNE instructions to test for true or
false.  The only problem with this scheme is that we use the branch
if not equal instruction, to test for true and the branch if equal to
test for false.  This may seem incongruent.  Rather than leaving
you feeling strange about using these tests, LISA incorporates
two additional branch instructions, BTR and BFL (branch if true
and branch if false, respectively), which generate the same code
as BEQ and BNE.  The former instructions are simply easier to
remember.

     While on the discussion of true and false, it should be men-



tioned that you should include the statements:

          FALSE  EQU $0
          TRUE   EQU $1
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at the beginning of your program.  True and false will not be used
as memory locations, but rather as symbolic constants.  Now your
programs will read:

          LDA #FALSE
          STA I
          LDA #TRUE
          STA FLAG

instead of:

          LDA #$0
          STA I
          LDA #$1
          STA FLAG

     Obviously, the first version is much more readable.  Inci-
dently, the use of symbolic constants is not limited to true and
false.  Anytime you use some hex value which has special signif-
icance (for instance the ASCII code for carriage return), it should
be declared as a symbolic constant.  Symbolic constants make
your programs much easier to read and modify.
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                            CHAPTER 6

                      ARITHMETIC OPERATIONS

NEW INSTRUCTIONS:

     ADC     SBC

GENERAL.

     The art of assembly language programming is actually the
art of learning to do things a piece at a time.  Arithmetics cannot
be performed with a single statement as in BASIC.  Rather, 10,
20, or even 50 lines of machine language code may be required
to perform a specific operation.

     There are three basic types of arithmetic operations per-
formed by the 6502 microprocessor: (1) unsigned binary, (2) signed
binary, and (3) unsigned decimal arithmetic.  DO NOT CONFUSE



THESE!  Each type of arithmetic follows its own set of rules; inter-
mixing these operations and/or rules may cause invalid results.

UNSIGNED INTEGER (BINARY) ARITHMETIC.

     When working with unsigned values, the 6502 processor
can handle numbers in the range of 0 thru 255.  Although the
range is not very good, eight bits are suitable for many appli-
cations.  As with the decrement instructions, wrap around occurs
if you try to add two numbers whose sum exceeds the range of
0 thru 255, likewise, wrap around occurs if you try to subtract a
large number from a smaller one.

     Do not worry about the range limitation at this time.  Multi-
precision operations which allow numbers to greatly exceed the
0 thru 255 limitation will be discussed later.

     Unlike your handy pocket calculator, the 6502 cannot per-
form functions such as SIN, COS, 1/X, LOG, or TAN.  In fact, the
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6502 cannot even multiply or divide two numbers.  The only arith-
metic operations the 6502 microprocessor can perform are
addition and subtraction.  All of the other fancy operations can be
simulated by using addition and subtraction.

     The 6502 instruction mnemonic for addition is ADC (add
with carry).  This instruction takes a memory operand and adds
it to the accumulator.  Once this is accomplished, the value con-
tained in the carry flag (zero or one) is also added to the accu-
mulator.  The reason behind this will become clear when we dis-
cuss multi-precision arithmetic.  In any case, your first unsigned
arithmetic rule is: ALWAYS CLEAR THE CARRY FLAG BEFORE
PERFORMING AN ADC.  Obviously, if you do not explicitly clear
the carry flag before performing an addition, you stand a 50/50
chance of ending up with the intended sum PLUS ONE.

     EXAMPLES:

          CLC     ;ALWAYS!
          LDA #$5
          ADC #$3
          BRK     ;PRINTS RESULT OF ADDITION
          END

          CLC
          LDA #7
          ADC #$3
          BRK
          END

          CLC



          LDA #$FC
          ADC #$20
          BRK
          END
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In the last example overflow will occur and you will end up with
the result $1C.

     What happens if an overflow occurs?  Unlike BASIC, a
machine language program will not abort with a "** >255" error.
In some repects this is friendly; no more nasty error messages.
Unfortunately, instead of being nice and informing you of a prob-
lem, the 6502 will go on about its business as though nothing had
happened.  This can lead to very unpredictable results!  Luckily,
the 6502 does provide us with a flexible error checking facility.  If
an overflow occurs during an addition instruction, the carry flag
will be set.  By using the BCC and BCS instructions you can test
for overflow immediately after an addition.

     EXAMPLE:

          CLC
          LDA I
          ADC J
          BCS ERROR ;GO TO ERROR IF OVERFLOW
          ETC...    ;OTHERWISE CONTINUE PROCESSING.

The use of the carry flag to inform us of an overflow is very useful.
Now, if we want to, we can elect to ignore an overflow condition.
Or, if we're absolutely positive that an overflow will not occur (e.g,
I and J are always in the range $0-$F) we don't have to waste
time or memory checking for the overflow.

     When an overflow does occur, you will be guaranteed one
thing: the true sum will fall somewhere in the range of $100 to
$1FE.  This is verified quite easily by adding the two largest values
representable in eight bits (namely $FF + $FF) together and
examining the results.  $FF plus $FF is $1FE.  Any other addition
using any other values will always produce a result less than
$1FE.  If you don't belive me try it out for yourself.  When an
overflow does occur, the value will be in the range $100 to $1FE
and the low-order eight bits of this value (i.e. $00-$FE) will be left
in the accumulator.

     EXAMPLES OF OVERFLOW:

          CLC           CLC
          LDA #$FF      LDA #$F0
          ADC #$1       ADC #$20
          BRK           BRK
          END           END
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          CLC           CLC
          LDA #$80      LDA #$80
          ADC #$80      ADC #$FF
          BRK           BRK
          END           END

RULES FOR UNSIGNED ADDITION.

     1) Do not confuse these rules with the rules which follow for
        subtraction, signed and decimal arithmetic.

     2) Always clear the carry before performing an addition.

     3) Test for overflow with the BCS instruction.  The carry flag
        will be set if overflow occurs.

SUBTRACTION.

     Subtraction is performed in a similar manner to addition with
three differences: (1) the SBC (subtract with carry) instruction is
used; (2) THE CARRY FLAG MUST BE SET BEFORE PER-
FORMING A SUBTRACTION; and (3) if the carry flag is clear
after a subtraction, an underflow has occurred.

     In practice, points (2) and (3) are totally opposite that of the
ADC instruction.  Be aware of this!  Many beginners consistently
forget that the carry must be SET before performing a subtraction,
and end up with invalid results.

     EXAMPLE: SUBTRACT I FROM J AND STORE THE
RESULT IN L

                SEC     ;ALWAYS BEFORE A SUBTRACTION!
                LDA J
                SBC I
                STA L
                BCC ERROR
                LDX #50
                BRK
          ERROR LDX #$FF
                BRK
                END

In this example, the X-register will be displayed as $00 if things
proceeded smoothly.  If an underflow occurred the X-register will
be displayed with the value $FF.  You can experiment with this
code sequence by initializing I and J with some LDAs and STAs
prior to the execution of the subtraction.  Naturally you must define
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the locations where I and J are supposed to be with the EQU or
EPZ pseudo opcodes.

     The SBC instruction affects the processor status register in
a manner identical to the CMP instruction.  Because of this you
can use the branch instructions after a subtraction in a manner
identical to that of the CMP instruction.  Although this is of little
value here (after all, the CMP instruction is easier to use); the
generalization to multi-precision operations becomes very impor-
tant later on.

     The N and V flags have no meaning in an unsigned arith-
metic operation.

RULES FOR UNSIGNED SUBTRACTION.

     1) Don't confuse these rules with those for addition, signed,
        or decimal arithmetic.

     2) Always set the carry before performing a subtraction.

     3) After the subtraction operation, the carry will be clear if
        an underflow occured.  The carry will be set otherwise.

SIGNED ARITHMETIC.

     What happens when you subtract $10 (16) from $8?  You
would normally expect to get -$8.  The computer, however, will
give you an underflow (i.e., the carry will be cleared) since neg-
ative numbers are not allowed in the unsigned number system.
Negative numbers, despite the fact that they are not defined in
our number system, are useful on several occasions.  Because of
this, a method for defining signed binary numbers had to be
developed.

     If you remember the section on two's complement in Chapter
2, you're probably thinking, "Why not use the high-order bit as a
sign bit?"  (If you don't remember this, review Chapter 2).  The
6502 processor has implemented the two's complement number
system for dealing with signed numbers.  In this numbering sys-
tem the 6502 can represent values in the range of -128 to +127
(using eight bits).  Signed arithmetic is performed in a manner
identical to unsigned arithmetic.  You use the ADC and SBC
instructions, and you must clear the carry flag before an addition
and set the carry flag before a subtraction.

     The only difference between a signed arithmetic operation
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and an unsigned arithmetic operation is that the carry flag is no
longer significant.  The carry flag is used to flag a carry out of bit
7.  Since bit 7 is our sign bit, overflow (when using signed arith-
metic) occurs when there is a carry out of bit 6.  Since a carry out
of bit 6 does not affect the carry flag you cannot test the carry flag



to check for overflow or underflow.  Instead, you use the overflow
(V) flag in the 6502 microprocessor.  This flag is set whenever
there is a carry out of bit 6 into bit 7.

     When an overflow/underflow occurs, the overflow flag is set;
if the allowable range is not exceeded, the overflow flag will
remain clear.  Unlike the unsigned tests which are opposite for
addition and subtraction, the BVS test is used for both overflow
(in the case of addition) and underflow (in the case of subtraction).
If the overflow flag is clear (testable by using BVC), the previous
operation was performed correctly.

     EXAMPLE PROGRAMS:

    OVERFLOW OCCURS             OVERFLOW DOES NOT OCCUR
    ---------------             ----------------------- 
        LDA #$7F ;127 DECIMAL           LDA #$1
        ADC #$1  ;1   DECIMAL           ADC #$2
        BRK      ;RESULT = -128         BRK      ;RESULT = 3
        END                             END

        CLC                             CLC
        LDA #$80 ;-128 DECIMAL          LDA #$FF ;-1 DECIMAL
        ADC #$80 ;-128 DECIMAL          ADC #$2  ; 2 DECIMAL
        BRK      ;RESULT = 0            BRK      ;RESULT = 1
        END                             END

        SEC                             SEC
        LDA #$80 ;-128 DECIMAL          LDA #$FF ;-1 DECIMAL
        SBC #$1  ;1    DECIMAL          SBC #$1  ; 1 DECIMAL
        BRK      ;RESULT = +127         BRK      ;RESULT=-2 ($FE)
        END                             END

    TESTING FOR UNDERFLOW/OVERFLOW:

        CLC                             SEC
        LDA #$FF                        LDA #$23
        ADC #$25                        SBC #$43
        BVS ERROR <- GO IF OVERFLOW ->  BVS ERROR
        BRK       <- STOP OTHERWISE ->  BRK
        END                             END
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SIGNED ARITHMETIC RULES.

     1) Don't confuse these rules with the rules for unsigned or
        decimal arithmetic operations.

     2) Always clear the carry bit before an addition operation
        and set the carry bit before a subtraction operation.

     3) Test for overflow/underflow using the BVS/BVC instruc-
        tions (overflow/underflow occurred if V=1).



SIGNED COMPARISONS.

     Signed comparisons are made by testing the overflow (V)
flag, the sign (N) flag, and the zero (Z) flag.  As usual, if the two
operands are equal when they are compared the zero flag will be
set.  This allows you to use the BEQ/BNE instructions to test for
equality.  Inequalities are a little more difficult.  The signed value
in the accumulator will be greater than or equal to the value in
the memory operand if and only if the overflow flag equals the
negative (sign) flag.  Likewise, the contents of the accumulator
are less than the memory operand if and only if the overflow flag
(after the comparison, of course) does not equal the negative
(sign) flag.

     There are only two problems which surface.  First, there is
no explicit instruction (such as, the BGE or BLT for unsigned
comparisons) which tests the sign and overflow flags.  Secondly,
the 6502 CMP instruction does not modify the overflow flag.

     The second of these two problems is the easiest to handle.
Although the CMP instruction does not modify the overflow flag,
the SBC instruction does; the SBC instruction affects the flags
(with the noted exception of the overflow flag) in a manner iden-
tical to that of the CMP instruction.  Therefore, a signed compare
instruction can be simumated by setting the carry (always before
a subtraction) and then using the SBC instruction in place of the
CMP instruction.

     The former problem is a little bit more sticky to handle.  The
following code will simulate a signed BGE and a signed BLT
instruction:

              SEC
              LDA A
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              SBC B
              BMI LBL
              BVC GE
          LT:         <- BRANCH TO HERE IF A < B
               .
               .
               .
               .
          LBL BVC LT
          GE:         <- BRANCH TO HERE IF A >= B

BINARY CODED DECIMAL ARITHMETIC.

     In Chapter 2 both unsigned and signed arithmetic were dis-
cussed.  In this section, a third numbering system will be dis-
cussed.  Binary Coded Decimal, or BCD, is a numbering system
that is convenient mostly for input/output purposes, instrumen-
tation purposes, and a few other special cases.  BCD is simply a



convenient method of representing decimal digits in a binary for-
mat, and is represented in the following form:

          DECIMAL DIGIT        BINARY REP.
          -------------        ---------- 
                0                 0000          0000
                1                 0001          0001
                2                 0010          0010
                3                 0011          0011
                4                 0100          0100
                5                 0101          0101
                6                 0110          0110
                7                 0111          0111
                8                 1000          1000
                9                 1001          1001

So far, BCD and binary representations look exactly alike, but
watch what happens when numbers beyond 9 are used.

          DECIMAL DIGIT        BINARY REP.
          -------------        ---------- 
              10                  1010        0001 0000
              11                  1011        0001 0001
              12                  1100        0001 0010
              13                  1101        0001 0011
              14                  1110        0001 0100
              15                  1111        0001 0101
              16             0001 0000        0001 0110

     In BCD the low-order nibble is used to represent the low
order decimal digit and the high-order nibble is used to hold the
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high-order decimal digit.  The bit patterns 1010 thru 1111 are not
allowed in either nibble of a BCD number.  With eight bits you can
represent numbers in the range of 0 thru 99.  BCD digits are spec-
ified in your assembly language programs in a manner identical
to hex constants.  Always preceed your BCD constants with a
dollar sign.

UNSIGNED BCD ARITHMETIC.

     As with signed and unsigned binary arithmetic, all additions
and subtractions are performed using the ADC and SBC instruc-
tions.  Likewise you must clear the carry before an addition and
set the carry before a subtraction.  Upon completion of the decimal
addition, the carry flag is set if an overflow occurred.  For the same
reason, the carry flag will be clear after a decimal subtraction if
underflow occurred.

     Since an unsigned decimal arithmetic operation looks
exactly like an unsigned binary arithmetic operation, there has to
be some way of determining whether the processor is to perform
a decimal or binary operation.  This is accomplished through the



use of a programmable flag (the D, or decimal flag) in the 6502
processor status register.  If the decimal flag is set, all arithmetic
operations will be carried out in the decimal mode.  If the decimal
flag is reset, all arithmetic operations will be carried out in the
binary mode.  As mentioned in the last chapter, the decimal flag
is set with the SED instruction and is cleared with the CLD instruc-
tion.  Other types of microprocessors have special decimal-
adjust instructions which must be executed after every BCD ad-
dition or subtraction.

     The decimal flag is very flexible.  You can set it once and not
worry about decimal arithmetic until you manually reset the dec-
imal flag using CLD.  This flexibility has one disadvantage.  If you
set the decimal flag and forget to reset it, any further binary arith-
metic operations you attempt will become invalid.  Although the
decimal flag can be used with great flexibility, care should be
exercised when using it.  For this very reason, the first instruction
in your program should be a CLD instruction, unless, of course,
you plan to perform decimal arithmetic right away (Use SED if
so).  This will initialize the decimal flag to a known state (and only
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God knows what it is before your program is run), thus preventing
a 'surprise' when your program does not work properly.

     There are two other considerations one must make when
using decimal arithmetic on the 6502 microprocessor.  First, the
result of a decimal operation is invalid if any of the nibbles in
either operand contain a value in the range of 1010 thru 1111.
Second, due to a bug in the 6502 itself, you must explicitly com-
pare the accumulator with zero to check for a zero result after an
addition.  The SBC instruction (alias CMP) works as expected.

     DECIMAL ARITHMETIC EXAMPLES:

          SED       ;SET DECIMAL MODE
          CLC       ;ALWAYS BEFORE AN ADDITION
          LDA #$25  ;INITIALIZE ACC TO 25 (DECIMAL/BCD)
          ADC #$10  ;ADD 10 (DECIMAL/BCD)
          BRK       ;RESULT IS 35
          END

          SED
          SEC       ;ALWAYS BEFORE A SUBTRACTION
          LDA #$52  ;INIT TO DECIMAL 52
          SBC #$22  ;SUBTRACT 22 (DECIMAL/BCD)
          BRK       ;RESULT IS 30
          END

          SED
          CLC       ;ALWAYS BEFORE AN ADDITION
          LDA #$99  ;LOAD WITH 99 (DECIMAL/BCD)
          ADC #$1   ;ADD 1 (DECIMAL/BCD)
          BRK       ;RESULT IS 0, CARRY = 1



          END

          SED
          SEC
          LDA #$00
          SBC #$1
          BRK       ;RESULT IS 99, CARRY = 0;
          END

UNSIGNED ARITHMETIC RULES.

     1) Use the SED instruction to set the decimal mode.

     2) Clear carry before an addition; set carry before a sub-
        traction.

     3) Make sure operands contain valid BCD digits, or an
        invalid result will be obtained.
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     4) If the operation is addition and the Z flag is to be tested
        after the addition, you must explicitly test for zero with
        'CMP #$00.'

     5) Overflow, after a decimal addition, is indicated by the
        presence of the carry flag.  In this case a value greater
        than 99 occurred.

     6) Underflow, after a decimal subtraction, is indicated by the
        absence of the carry flag (i.e., C = 0).  In this case you
        are trying to represent a number less than 00.

SIGNED BCD ARITHMETIC.

     The 6502 does not support signed decimal arithmetic.  If you
need signed arithmetic, stick to binary numbers.

ARITHMETIC REVIEW.

     In this chapter we have discussed three types of number
systems: unsigned binary, signed binary, and unsigned decimal
(BCD).  Why should we bother with three different number sys-
tems when, by initial observation, it looks like signed binary inte-
gers will meet most of our needs?

     BCD is very useful when you are performing I/O operations
and very few computation operations.  Several instruments, such
as voltmeters, frequency counters, and clocks output BCD data.
If you are going to interface the APPLE II computer with such a
device, you will probably have to use BCD.

     Unsigned binary arithmetic is used when processing posi-
tive-only numbers.  This is approximately 95% of the time (at least
in most assembly language applications).  If you are not going to



use negative numbers, why not double your range and use
unsigned integers only?  Signed arithmetic should be used ONLY
where negative numbers are actually expected.  Unsigned binary
arithmetic is faster, easier to perform, and generally more useful
than signed or BCD arithmetic.

RULES FOR 8-BIT ARITHMETIC.

     1)  Maximum value

             a) Signed   = 127
             b) Unsigned = 255
             c) Decimal  = 99
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     2) Minimum value:

             a) Signed   = -128
             b) Unsigned = 0
             c) Decimal  = 0

     3) User must supply routine to handle overflow and
        underflow by testing C or V bits, if desired.

     4) Always clear the carry before an addition and
        set the carry before a subtraction

     5) Remember, all arithmetic goes through the accumulator.

     8-bit arithmetic has several serious restrictions, the most
prominent being the range limitation.  Handling larger numbers
will be considered in the chapter on multiple-precision arithmetic.
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                            CHAPTER 7

                      SUBROUTINES AND STACK
                           PROCESSING

NEW INSTRUCTIONS:

     PHA     PLA     JSR
     PHP     PLP     RTS

GENERAL.

     As in BASIC, assembly language programmers often need
to be able to branch to a section of code, execute it, and then
return back to the next available instruction.



     This mechanism is the subroutine.  In BASIC you would use
the GOSUB statement (go to subroutine) to branch to a subrou-
tine.  When the desired task had been accomplished, you would
use the RETURN statement to return from the subroutine.

     Assembly language subroutines are handled in an identical
manner, except you use the JSR instruction (Jump to Subroutine)
to call (or "invoke") a subroutine, and you use the RTS (Return
from Subroutine) instruction to return from the subroutine.  The
JSR instruction is syntactically identical to the JMP instruction: a
1-byte instruction code followed by a 2-byte absolute address.
The RTS instruction is a 1-byte (implied addressing mode)
instruction.

     The need for subroutines in assembly language is much
greater than the need for subroutines in BASIC.  Subroutines in
BASIC are often used for initialization purposes, or perhaps to
prevent code repetition.  Subroutines are required in assembly
language for these same reasons of course, but an even more
important use of the subroutine is that it can be used to break up
a complex task into small (and easier to handle) sub-tasks.  As
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mentioned in the chapter on arithmetic, the 6502 can only add or
subtract.  What happens when you wish to perform a multiplication
or division?  A subroutine would be used.  In BASIC you certainly
wouldn't use a subroutine to perform a multiplication because
multiplication is built into that language.  However, in assembly
language it is necessary to use a subroutine since there is no
multiply instruction.  As you can see, places you would not have
dreamed of using a subroutine before will require a subroutine in
assembly language.  I/O is another area where subroutines are
required.  The 6502 itself does not support a "PRINT" or 'INPUT'
statement, these have to be synthesized using subroutines.

     The most important use of the subroutine may be that it
allows you to break a task into smaller modules, each of which
are easy to code compared to coding the whole problem all at
once.  This type of approach is called the "TOP-DOWN" program
development method.  If you have read any of the computer mag-
azines available, you are probably sick and tired of the phrases
"structured programming" and "top-down program design."
Admittedly, everyone and his brother who wanted to see their
name in print has written an article for BYTE magazine about the
joys of structured programming.  Some articles have been good,
some have been poor, and, in fact, some have been downright
misleading.  There have even been some articles about "struc-
tured programming in assembly language."  Structured program-
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ming and top-down program design are often confused in these
articles.  Structured programming entails the use of "program
structures" such as the FOR loop, the REPEAT/UNTIL loop, the
WHILE loop, the IF/THEN/ELSE statement, and BEGIN/END
(or equivalent) block structures.  Obviously, structured program-
ming is not possible in assembly language because the afore-
mentioned program statements are not available in assembly lan-
guage.  Sure, you can simulate those instructions using JMPs and
CMPs, but then you can simulate these statements in BASIC or
FORTRAN by using GOTO's and IF statements.  The idea of
structured programming disallows the use of the GOTO (or JMP)
instruction, however, so by definition, structured programming is
not possible in assembly language.  Nevertheless, it is a good
idea to simulate these programming constructs (the IF/THEN/
ELSE, REPEAT/UNTIL, etc.).  This topic will be discussed later in
the chapter.

     Top-down program design is another fancy buzz word mak-
ing the rounds these days.  The concept behind top-down program
design is as follows: First, define the problem in very gross terms.
Do not fill in any of the details.  Next, break each of these gross
terms down (one at a time, of course) into little pieces, each a
little more detailed and refined than the previous generalization.
Now take each of these little pieces and continue breaking them
down until the assembly language code to implement that partic-
ular detail is obvious.

     Each step in the definition of the problem should correspond
to an assembly language subroutine.  The main program should
simply be a few initialization statements, a few tests, and then a
number of JSR instructions to the various detail-handling subrou-
tines.  Likewise, each of these subroutines should simply be a
collection of initializations, tests, maybe a little data manipulation,
and a lot of JSR instructions.

     Eventually the task will be broken down to a point where, at
the lowest level, the subroutine simply consists of some assembly
language statements without any JSR instructions.  Naturally, the
depth of subroutine nesting is dependent upon the application.
Simple programs may have only one or two levels of subroutines,
while complex programs may have 10 or 20 levels of subroutines.
The actual level to which you should nest your subroutines

                               7-3

*****************************************************************

depends on several factors, the most important of which is how
detailed you as the programmer wish to get.

     Programs written in this manner are immeasurably easier
to debug, and, as you can probably tell, assembly language pro-
grams are very hard to debug.  You may save two days by not
using a top-down approach when writing your code, but be pre-
pared to spend a week, instead of another two days, debugging
your code.



VARIABLE PROBLEMS.

     Subroutines in assembly language suffer from many of the
same problems as subroutines in BASIC.  For example, consider
the following BASIC program:

          10 FOR I=1 TO 10
          20 GOSUB 50
          30 NEXT I
          40 END
          50 I=1
          60 RETURN

     In this example, the FOR/NEXT loop is slated to execute 10
times.  Unfortunately the subroutine at line number 50 resets I to
1 each time it is called.  This means that an infinite loop is formed
since I will never be allowed to advance beyond two.

     The same thing can happen in assembly language pro-
grams.  "So what?" you're probably asking.  Just make sure that
you don't use Ioop index variables in your subroutines (i.e., use
a different name).  In assembly language programs you can use
different names for variables, just as in BASIC, BUT WHAT
ABOUT THE REGISTERS?  Consider the following code:

                LDX #$F
          LBL   JSR SETX
                DEX
                BNE LBL
                BRK
          ;
          ;
          SETX  LDX #$10
                RTS

     In this example, the X-index register is used as the indexing
variable for the loop.  The subroutine SETX loads the X-register
with the value $10 (16) and returns.  Upon returning, the X-register
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will be decremented (and will become $F or 15), and will contain
a non-zero result.  Because of this, the loop will be repeated, once
again loading the X-register with $10 and decrementing, etc.  A
good example of an infinite loop.

     Obviously, you cannot "rename" the X-register.  Yet not allow-
ing a program to use the X-register (or accumulator or Y-register
for that matter) is asking too much.  Rather than disallow the use
of the 6502 registers in a subroutine, you can save the affected
6502 registers upon entry into the subroutine (and before they
are used) and then restore the registers with their original values
prior to returning from the subroutine.  The previous example
could be safely coded as:



          XSAVE   EPZ $0      ;SAVE LOCATION FOR THE X REGISTER
                  LDX #$F
          LBL     JSR SETX
                  DEX
                  BNE LBL
                  BRK
          ;
          ;
          SETX    STX XSAVE
                  LDX #$10
                  LDX XSAVE
                  RTS
                  END

Although this example does not accomplish much, at least the
main program does what is expected of it, namely calling SETX
15 times and then stopping.

     This does not completely solve all of the problems with sub-
routines and register usage.  Consider the following code:

          XSAVE   EPZ $0
                  LDX #$F
          LBL     JSR SETX
                  DEX
                  BNE LBL
                  BRK
          ;
          ;
          SETX    STX XSAVE
                  LDX #$10
                  JSR SETX2
                  LDX XSAVE
                  RTS
          ;
          ;
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          SETX2   STX XSAVE
                  INX
                  LDX XSAVE
                  RTS
                  END

This program starts out by setting up a loop, as before.  Within
the loop the subroutine SETX is called.  To prevent an infinite loop,
the value contained in the X-register is stored at location XSAVE.
Afterwards the X-register is loaded with the value $10, and then
a call to SETX2 is made.  As per the preceeding discussion, the
X-register is saved because SETX2 modifies its contents.  One
problem develops here though.  The current value of the X-register
($10 obtained from loading the X-register with $10 in subroutine
SETX) wipes out the previous value of XSAVE used to hold the
value of the X-register in the main program.  So when you return



to SETX, things are okay; the X-register is loaded with $10, just
as before, the call to SETX2 was made.  Now, however, when the
program attempts to restore the X-register to its original value (in
the main program,) it will load the X-register with $10 instead of
the actual original contents of $F.  Once again the program is in
an infinite loop.

     The solution to this problem?  Simply use a new (and unique)
variable name (with a corresponding unique address) for the reg-
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ister save locations in each subroutine.

     EXAMPLE:

          XSAVE1  EPZ $0
          XSAVE2  EPZ $1
          ;
                  LDX #$F
          LBL     JSR SETX
                  DEX
          BNE     LBL
          BRK
          ;
          ;
          SETX    STX XSAVE1
                  LDX #$10
                  JSR SETX2
                  LDX XSAVE1
                  RTS
          ;
          ;
          SETX2   STX XSAVE2
                  INX
                  LDX XSAVE2
                  RTS
                  END

This program will work as intended without getting itself into an
infinite loop.  When using different variable names for each sub-
routine, it is probably better to use the DFS (define storage)
pseudo opcode and reserve one byte (for each register) imme-
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diately before the subroutine.

     EXAMPLE:

                  LDX #$F
          LBL     JSR SETX



                  DEX
                  BNE LBL
                  BRK
          ;
          ;
          XSAVE1  DFS 1    ;RESERVE ONE BYTE FOR THE X REGISTER.
          ;
          SETX    STX XSAVE1
                  LDX #$10
                  JSR SETX2
                  LDX XSAVE1
                  RTS
          ;
          ;
          XSAVE2  DFS 1
          ;
          SETX2   STX XSAVE2
                  INX
                  LDX XSAVE2
                  RTS
                  END

     Variables that are referenced only by one subroutine are
said to be LOCAL to that routine.  Local variables should always
be defined immediately before the subroutine in which they are
used.  This will help avoid confusion when reading the program
later on.  By contrast, variables that are used by several subrou-
tines (and possibly the main program) are said to be GLOBAL
variables.  For most applications of assembly language on the
APPLE II computer using local variables to save the registers is
fine.

     There are two types of subroutines which cannot use local
variables.  The so-called, "REENTRANT" subroutine (which can
be an interrupt driven subroutine or a recursive subroutine) and
the "ROMABLE" subroutine.  It is possible for a reentrant subrou-
tine to call itself (hence the name reentrant).  If local storage is
used for these types of subroutines, the registers will surely be
"clobbered."

     Romable subroutines, on the other hand, represent a dif-
ferent problem.  Since the program is to be stored in ROM you
cannot use the DFS statement to reserve memory because the
location reserved for storage would be in ROM!  The EQU psuedo
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opcode could be used to define a location which is in RAM, but
this may be inconvenient at times.

     It would be very nice if there were some magic memory
location where you could store a value, and then be able to store
another value on top of it, but rather than destroying the original
contents of that memory location, the original contents would
magically be saved somewhere else for us.  Then, whenever one



of the registers is loaded from the magic location, it would give
us the last value that was stored there.  Immediately after that
value is loaded into the register, the previous contents would be
loaded back into our magic memory location.  With this magic
memory location we could have the code:

                  LDX #$F
          LBL     JSR SETX
                  DEX
                  BNE LBL
                  BRK
          ;
          ;
          SETX    STX "MAGIC"
                  LDX #$10
                  JSR SETX2
                  LDX "MAGIC"
                  RTS
          ;
          ;
          SETX2   STX "MAGIC"
                  INX
                  LDX "MAGIC"
                  RTS
                  END

In this example we load the X-register with the value $F and then
call SETX.  At SETX we save the X-register into our magic memory
location.  We then load the X-register with $10.  Next the program
calls SETX2.  Upon entry into SETX2 the X-register is once again
saved into our magic memory location.  This causes the previous
contents to be saved somewhere else (and it's all automatic).
Next, the X-register is incremented by one, giving us $11.  The
next instruction loads the X-register from our magic memory
location thus restoring $10 in the X-register.  Also, this causes the
original value stored in the magic memory location ($F) to be
reloaded into the magic memory location.  SETX2 then returns to
its calling procedure, namely SETX.  SETX then loads the X-reg-
ister from the magic memory location (which now contains $F)
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and then returns to the calling procedure with the contents of the
X-register being the same as when SETX the call invoked.

     Our magic memory location is an example of a LIFO (Last
In, First Out) data structure, which is usually called a stack.  The
classical analogy is that of a dish well in a restaurant.  As the bus
boy brings more dishes out, the first dishes placed in the dish well
are 'pushed' down into the well.  Then, as the waitress picks dishes
out of the dishwell, the last ones placed in the dish well are the
first ones she can get her hands on.  Eventually (assuming the
bus boy is slow), the waitress will take the last plate out of the
well, which was the first plate stored there.



     The 6502 microprocessor supports a LIFO stack.  You can
push data in the accumulator onto the stack with the PHA (push
accumulator) instruction.  Likewise data can be "pulled" from the
6502 stack and placed in the accumulator with the PLA (pull
accumulator) instruction.  The PHA instruction becomes our
method of storing the accumulator at the "magic" memory loca-
tion, and likewise the PLA instruction becomes our method of
loading the accumulator from the "magic" memory location.

     If you push the contents of the accumulator onto the stack
and never pull it off, then that result is simply left of the top of the
stack.  What happens if you pull a value off the stack without first
pushing data onto the stack?  To answer this question, the actions
of push and pull must be further explained.  The 6502 stack
revolves around an 8-bit register within the CPU called the stack
pointer.  $100 is added to the contents of the stack pointer to get
a value in the range of $100 thru $1FF.  Whenever data is pushed
onto the stack, the data is stored in the memory location pointed
to by the stack pointer in page one of memory.  Immediately after
the data is pushed onto the stack, the stack pointer is decre-
mented by one.  The next time data is pushed onto the stack, it
will be stored on the memory location immediately below the pre-
vious entry.  The stack pointer always points to the next available
memory location.  When data is pulled off of the stack, the stack
pointer is first incremented by one, and then the accumulator is
loaded from the memory location pointed at by the stack pointer.
So each time you use the PHA instruction, you will be guaranteed
that the accumulator will be stored in a new and unique loca-
tion...with one exception.  Since the stack pointer is only eight bits
wide you can push a maximum of 256 bytes onto the stack before
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the wrap-around function causes the first byte you pushed onto
the stack to be overwritten.  In general, 256 is plenty.  A typical
program usually requires, at most, 64 bytes for temporary stor-
age.

     There are no explicit instructions for pushing and pulling the
X- or Y- registers.  To push these registers onto the stack you
should transfer the desired register to the accumulator (with the
TXA or TYA instruction) and then push the accumulator.

     EXAMPLES:

          PUSH THE Y REG  PUSH THE X REG
          --------------  -------------- 
               TYA             TXA
               PHA             PHA

Be aware that this will destroy the contents of the 6502 accu-
mulator.

     Now we can use the PHA and PLA instructions to save the
registers for us in a subroutine.  This is accomplished as follows:



                  LDX #$F     ;INIT INDEX COUNT
          LBL     JSR SETX
                  DEX         ;DECREMENT COUNT
                  BNE LBL     ;LOOP IF NOT THROUGH
                  BRK         ;STOP
          ;
          ;
          SETX    PHA         ;SAVE THE ACCUMULATOR
                  TXA         ;SAVE THE X REGISTER
                  PHA
                  TYA         ;SAVE THE Y REGISTER
                  PHA
          ;
                  LDX #$10
                  JSR SETX2
          ;
                  TXA         ;NOW RESTORE THE Y REGISTER
                  TAY
                  PLA         ;RESTORE THE X REGISTER
                  TAX
                  PLA         ;RESTORE THE ACCUMULATOR
          ;
          ;
          SETX2   PHA         ;SAVE ACC
                  TXA         ;SAVE X REG
                  PHA
                  TYA         ;SAVE Y REG
                  PHA
          ;
                  INX
          ;
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                  PCA
                  TAY         ;RESTORE THE Y REG
                  PLA
                  TAX         ;RESTORE X REG
                  PLA         ;RESTORE ACC
                  RTS

You will notice that the registers were pulled off of the stack in the
reverse order that they were pushed onto the stack.  Remember,
the stack is a LIFO (last in, first out) data structure.

     Have you ever wondered how the 6502 remembered what
address to return to after a subroutine execution?  The return
address is pushed onto the stack when the JSR instruction is
executed, and is popped off of the stack when a RTS instruction
is executed.  This feature allows nested, and reentrant subrou-
tines.  There is one problem however.  If you push data onto the
stack, and forget to pull it off before executing a RTS instruction,
the data pushed onto the stack will be used as part of the return
address.  This brings up one very simple, yet often violated rule:



always remove data pushed onto the stack before executing a
RTS instruction.  Likewise, don't pull too much data off the stack
or you will lose part of the return address (and whatever garbage
is located just above the true return address will be considered
part of it).

     This helps enforce one very strong point of top-down pro-
gram design: subroutines should have one entry point and one
exit point ONLY!  If you place multiple return points within a sub-
routine, chances are you will forget to pull all the data off the stack
in at least one of these locations.  The solution is simple.  Rather
than placing several RTS instructions within a subroutine, simply
JMP to the single return from subroutine sequence (i.e., PLA and
RTS instructions) within the subroutine.

     EXAMPLE:

          SUBRT   PHA
          ;
                  LDA LOC1
                  CMP #$50
                  BLT SUB1
          ;
                  LDA #$0
                  STA LOC1
                  JMP SUBX
          ;
          SUB1    INC LOC1
          SUBX    PLA
                  RTS
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Since the X- and Y-registers were not used within this subroutine,
there was no need to save them onto the stack.

     Since subroutines are useful in instances where code is
replicated, why not write a subroutine which pushes the registers
onto the stack, and its corresponding inverse function, which
the data off of the stack?  These routines could be called SAVE
and RESTR and are often coded by inexperienced programmers
as:

          SUBRT   JSR SAVE

            -SUBROUTINE- 
            -CODE  GOES- 
            -   HERE   - 

                  JSR RESTOR
                  RTS
          ;
          ;



          SAVE    PHA
                  TYA
                  PHA
                  TXA
                  PHA
                  RTS
          ;
          ;
          RESTR   PLA
                  TAX
                  PLA
                  TAY
                  PLA
                  RTS
                  END

Avoid the temptation to do this!  When you push the accumulator,
X-register, and Y-register onto the stack, then execute a RTS
instruction, the 6502 attempts to use the last two bytes pushed
onto the stack as a return address.  The previous contents of the
X- and Y-registers will probably not make a very good return
address.

PASSING PARAMETERS.

     A parameter is simply a variable used to pass data to a
subroutine.  For example, in SIN(X), X is a parameter of the func-
tion SIN.  This function, when called, returns the value of the tri-

                              7-13

*****************************************************************

gonometric sine of X (in Applesoft, not assembly language).
POKE is also a procedure that has parameters.  POKE, in fact,
has two parameters: a memory address where the data, specified
in the second parameter, is to be stored.  Some procedures only
require that data be passed to them.  POKE is a good example of
such a procedure.  Other procedures and functions return data as
well.  SIN(X) and PEEK are two good examples of functions that
return data.

     There are several useful methods for passing data to a 6502
subroutine.  Possibly the easiest method is to pass the data in the
6502 registers.  Although this method is simple to use (and in fact
it is used all the time), it has one major drawback.  You're limited
to only three bytes for your parameters.  For some applications
(such as printing a single character to the video screen, or reading
a key from the keyboard) this is sufficient.  As an example, the
Apple monitor ROM contains two routines, one which prints the
character in the accumulator onto the screen as an ASCII char-
acter, and another routine which reads the keyboard and returns
the ASCII code of the key pressed in the accumulator.  These
routines are located at addresses $FDED and $FD0C respec-
tively.  You can turn your APPLE II computer into an "electronic
typewriter" by running the following program:



          COUT    EQU $FDED   ;USE A SYMBOLIC LABEL FOR
                              ;CHARACTER OUTPUT

          RDKEY   EQU $FD0C   ;SAME FOR KEYIN ROUTINE

          LOOP    JSR RDKEY
                  JSR COUT
                  JMP LOOP
                  END

Incidently, to stop this program, hit the reset key.

     When you need to pass more than three bytes to a subrou-
tine, a different method must be used to pass the parameters.
One method is to store the parameters in some known locations
and then access these known locations from within the subrou-
tine.  Likewise, after returning from a subroutine the calling pro-
cedure can look at some known location to retrieve returned data.
As an example, consider the following program (SUM) which

                              7-14

*****************************************************************

sums four bytes together and returns the sum of these four bytes:

                  LDA I
                  STA PARM1
                  LDA J
                  STA PARM2
                  LDA K
                  STA PARM3
                  LDA L
                  STA PARM4
                  JSR SUM
                  LDA RESULT
                  BRK
          PARM1   DFS 1
          PARM2   DFS 1
          PARM3   DFS 1
          PARM4   DFS 1
          RESULT  DFS 1
          SUM     CLC
                  LDA PARM1
                  ADC PARM2
                  CLC
                  ADC PARM3
                  CLC
                  ADC PARM4
                  STA RESULT
                  RTS
                  END

Suitable checks could be made, if desired, for overflow after any
of the additions.  As with the register storage scheme, parameters



should be local variables, not accessed by any other subroutines
(other than for data transfer between the two).
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                            CHAPTER 8

                       ARRAYS, ZERO PAGE,
                      INDEXED, AND INDIRECT
                           ADDRESSING

     HEX ORG OBJ DFS ASC

GENERAL.

     So far, the only addressing modes we have used are the
absolute (16-bit address), immediate (8-bit data), and relative (8-
bit displacement) addressing modes.  Although these are the most
commonly used, they are not the only addressing techniques
available.

ZERO PAGE ADDRESSING.

     THE 64K address space of the 6502 is broken up into 256
blocks of 256 bytes.  These blocks are called, "pages."  These
pages are numbered sequentially starting with 0 and ending with
$FF.  Page one, of course, is reserved for the 6502 stack.  Page
zero (the first 256 locations in the machine) is usually used for
variable and pointer storage.  As such, page zero is somewhat
special.  Page zero locations are used extensively by the Apple
monitor, DOS, and most languages such as BASIC and Pascal.
If you are going to be calling a machine language program from
one of these languages (or using DOS from an assembly lan-
guage program), you have to be very careful about using zero
page locations.  If you attempt to use a zero page location that is
being used by the host language (or subsystem such as Apple
DOS), then a "zero page conflict" may arise, and your program
may not behave properly.  To help you avoid using zero page
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locations that may be utilized by one of the high-level languages,
you should check out the zero page memory map in the new
Apple reference manual (The White Book) on pages 74 thru 75.

     Since a conflict may arise, why even use zero page loca-
tions?  After all, there are 48,496 other RAM locations which can
be used for variable storage; what's the big deal with zero page?
Well, the designers of the 6502, realizing that page zero would
be used quite often for variable storage, implemented a "zero
page addressing mode."  A zero page addressing mode instruc-
tion consists of a 1-byte instruction code followed by a 1-byte



address.  Since one byte can only uniquely specify 256 different
memory locations, this type of instruction can only reference one
page of memory.  You got it: page zero.  Thus, a zero page instruc-
tion, since it only requires two bytes, saves you some memory
(remember, absolute addressing mode instructions require three
bytes).  Another advantage to using zero page instructions is that
zero page instructions execute faster than absolute addressing
mode instructions (in fact a zero page addressing mode instruc-
tion executes in three-fourths the time required by an absolute
addressing mode instruction).

     An instruction automatically uses zero page address when:

          1) The address reference is non-symbolic
             (i.e., a label is NOT used) and the value
             is less than $100.

             EXAMPLE:

                  LDA $1
                  STA $FF
                  LDX $1
                  ADC $25

          2) The address reference is symbolic and
             the symbol was declared using the "EPZ"
             (Equate to Page Zero) pseudo opcode.

             EXAMPLE:

          LBL     EPZ $0
          LBLA    EQU $0
                  LDA LBL          ;ZERO PAGE ADDRESSING USED
                  LDA LBLA         ;ABSOLUTE ADDRESSING USED
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Remember, the zero page addressing mode will only be used
when the label is defined with the EPZ pseudo opcode.  In all
other cases (except non-symbolic mentioned above) the absolute
addressing mode will be used.

ARRAYS IN ASSEMBLY LANGUAGE.

     Single variables are nice, but often strings and arrays are
required to accomplish a desired task.  An array is a collection of
data, each element of the array being of identical length (i.e., the
same data type) to every other element.  Arrays are stored in
consecutive memory locations and any element of an array can
be accessed by adding a displacement to the address of the first
element.

     First, how are arrays defined in an assembly language pro-
gram?  There are several methods.  Basically, to reserve a block
of memory you simply have to decide where in memory the array



is going to be located, and then not utilize that memory for any-
thing else.  Using this criterion, an array can be declared using
the EQU pseudo opcode.  For instance, let's assume you want to
reserve 40 bytes (possibly to hold up to 40 characters for use in
a display driver).  Next, decide where in memory you want the
array stored.  Make sure, of course, that you do not define your
array such that it will be sitting on top of your code or some other
code such as DOS.  Page three is a good place to store small
arrays (unless, of course, you have some sort of driver already
down there!).  To define an array beginning at location $300 simply
use the statement:

     ARRAY EQU $300 ;ARRAY IS $28 (40) BYTES LONG.

This statement says the array ARRAY begins at location $300;
that's all this statement says.  You, as the programmer, must make
a mental note that the locations from $300 to $327 are being
utilized by the array (hence the comment to the right).  If you were
to declare another array, say 10 bytes long, you would include:

     ARRAY EQU $300 ;ARRAY IS $28 (40) BYTES LONG
     ARRAY2 EQU $328 ;ARRAY IS $A (10) BYTES LONG.

This ensures that the memory space for ARRAY2 does not con-
flict with the memory space for ARRAY1

     Obviously, performing the arithmetic yourself (especially if
you don't have a TI Programmer) is quite tedious and error prone.
A better way to declare arrays is:
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          ARRAY   EQU $300
          ARRAY2  EQU ARRAY+$28
          ;
          ;ARRAY2'S LENGTH IS $A
          ;

This statement says that ARRAY2 begins 40 locations ($28)
beyond the start of ARRAY.  The comment after ARRAY2 simply
states how long ARRAY2 is supposed to be, so you can add more
data onto this list later on, should you so desire.

     Using the EQU statement has two disadvantages.  The first
disadvantage is that you must know, as you are writing the pro-
gram, where the array will be stored in memory.  Generally, this
leads to inefficient coding, especially when declaring large arrays,
because you are never sure where the end of your program is
(the end is generally a good place to put an array so that the
program consists of one big chunk).  The second drawback is the
fact that you must always remember the length of the last
declared array in the event you wish to add more arrays later on.
It would be nice if one could say, "Hey!  Reserve me 10 bytes here
(wherever "here" is) for my array, and then continue with the code
after these 10 bytes.



     The ORG pseudo opcode allows you to do exactly that.  The
ORG pseudo opcode (program ORiGin) simply sets the value of
the location counter to the address specified in the address
expression in the operand field.  The location counter is a pointer
that determines where the current assembly language code is
supposed to be stored.  Generally, when you assemble a program
(without an explicit ORG) the program is automatically stored
beginning at location $800.  During assembly, as each byte of
code is created, it is stored at the location pointed to by the loca-
tion counter, and then the location counter is incremented by one.
Each time a label is encountered within the assembly language
program, the symbol is stored in the symbol table along with the
contents of the location counter when the symbol was defined
(with the obvious exception of EQU and EPZ which store the
address in the operand field in the symbol table along with the
label).  Consider the following assembly language program:

                  ORG $800        ;DEFAULT VALUE
                  JMP LABEL       ;THREE BYTE INSTRUCTION
          ARRAY   ORG $903
          LABEL   ---             ;THE REST OF YOUR PGM GOES HERE
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In this example the assembler is instructed to begin the program
at location $800 (the default value).  Immediately following the
ORG statement is a JMP instruction.  Since JMP's are always
three bytes long, the next code generated will be stored at loca-
tion $803.  The next instruction contains a label ('ARRAY'), so this
label is stored in the symbol table along with the current value of
the program counter.  Note that, with the exception of EQU and
EPZ, the label is stored in the symbol table before the code for
the instruction on that line is emitted (or, if you have a pseudo
opcode such as ORG, before the instruction is executed).  As a
result of this, ARRAY is stored in the symbol table with the value
$803 (the current value of the location counter).  Next, the ORG
pseudo opcode gets executed and the location counter is forced
to contain the value $903.  Notice that LISA has just made room
for a 256-byte array within the program itself.  The only drawback
to this method of reserving memory is that you must know the
current value of the program counter in order to use it.  Often this
is impossible, so it seems to exclude the use of the ORG state-
ment as a means of reserving memory.

     But wait!  Whenever the assembler sees an asterisk ('*') in
the operand field, it will substitute the current value of the location
counter in its place.  Rather than guessing (educated or otherwise)
about the current value of the location counter, you can use the
'*' and be assured of getting the correct value.  Now you can
reserve 256 bytes as follows;

                  ORG $800
                  JMP START
          ARRAY   ORG *+$100     ;RESERVE 256 LOCATIONS



          START   ---           ;CODE GOES HERE

     Another problem which surfaces is the age old problem
known as "separation of program and data."  If you place an array
inside your program, you must insure that the code will not get
executed as data.  Otherwise, unexpected results may be obtained.
In the previous example you will note that a JMP instruction
caused program execution to jump over the array.  In general,
arrays and other data stored within your program should only
follow instructions which unconditionally alter the flow of the pro-
gram.  Such instructions include JMP, RTS, and BRK.

     Another problem when using the ORG pseudo opcode sur-
faces when using the OBJ pseudo opcode.  First, since it is a new
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instruction, what is the OBJ pseudo opcode?  LISA, during assem-
bly, uses every memory location in the APPLE II computer except
memory in the range $0800 to $1800.  (This may vary depending
upon how you have initialized the system, but the above are the
default values.)  What happens if you want to be able to run your
assembly language program at location $4000?  You cannot
assemble your program at location $800 (the default location),
and then simply move your code to location $4000 and execute
it.  Most 6502 assembly language programs are not RELOCAT-
ABLE.  (Relocatable means that a program can be executed
anywhere in memory without any problems.)  Unfortunately, all
those JMP's, JSR's, etc. reference absolute memory locations.
If you assembled the program:

                  ORG $800
                  JMP LBL
          ARRAY   ORG *+$100
          LBL     LDA ARRAY
                  STA ARRAY+$1
                  BRK
                  END

and then moved it to location $4000 before running it, the program
would not execute as planned.  Since the program was ORG'd for
location $800, all absolute addresses (such as the address of
LBL and ARRAY) will simply be offsets from this initial address.
In this case ARRAY will be assigned the address $803 and LBL
will be assigned the address $903.  Now, when the code is gen-
erated for this program, $903 will be substituted for LBL, which
means the first JMP instruction will be converted to JMP $903.
If you move the code to location $4000 and try to execute it with
the 4000G monitor command, the first instruction (JMP $903) will
simply continue execution of the program at the location at which
the program was originally assembled.

     Does this mean that all assembly language programs you
write must reside in the locations $800 to $2000?  Definitely not!
It simply means that while you are assembling your code, the



object code (the machine language instructions produced by
LISA) has to be stored in this range.  Now, whenever the ORG
pseudo opcode is encountered, the code counter (a pointer that
determines where the code will be stored in memory) is changed
to the value in the operand field as is the location counter.  This
means that if your program contains an ORG $4000 instruction,
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not only will the code be assembled to run at location $4000, but
it will also be stored there.  Since this is a no-no location for object
code (LISA normally stores the textfile in this region and storing
object code here may "clobber" part of your textfile) some means
must be used to make ensure that the object code gets stored in
the range $800-$1800.

     The OBJ pseudo opcode does this for you.  The OBJ pseudo
opcode simply changes the value in the code counter (the pointer
to where the object code is being stored) to whatever address
appears in the operand field.  If you want to assemble your pro-
gram to run at location $4000, you should use the code:

                  ORG $4000
                  OBJ $800
                  LDA #$0
                  STA LBL
                  BRK
          LBL     EQU $0
                  END

     What does all this have to do with declaring arrays?  Let's
consider the following program:

                  ORG $4000
                  OBJ $800
                  JMP LBL
          ARRAY   ORG *+$100
          LBL     LDA ARRAY
                  STA ARRAY+$1
                  BRK
                  END

The ORG $4000 pseudo opcode insures us that the correct code
will be generated.  The OBJ $800 pseudo opcode ensures that
the code will be stored in the memory range $800 - $1800.  The
JMP instruction ensures that the data will not get interpreted as
instruction code.  BUT, the ORG *+$100, used to reserve memory
for the array, causes a slight problem.  Remember, the ORG
pseudo opcode resets the location counter as well as the code
counter.  This means that when "ORG *+$100" is encountered,
The location counter will be set to $4103 (which we want), but the
code counter will also be set to $4103 (which we don't want),
thereby clobbering the textfile.  Including the instruction "OBJ
*+$100" does not complete solve the problem either.  Since the
location counter is already $4103 by the time the OBJ *+$100



would get executed, the inclusion of such an instruction would be

                               8-7

*****************************************************************

futile.  There are ways of handling this problem, but fortunately
LISA offers a better alternative.

     LISA provides the programmer with another instruction, DFS
(define storage), to handle this problem for you.  When a DFS
pseudo opcode is encountered, LISA will increment both the pro-
gram counter and the code counter by the number of bytes spec-
ified in the operand field.  To reserve 256 bytes as in the last
example, you would write:

                  ORG $4000
                  OBJ $800
                  JMP LBL
          ARRAY   DFS $100
          LBL     LDA ARRAY
                  STA ARRAY+$1
                  BRK
                  END

and the DFS statement would automatically reserve the memory
bytes for you.  When using the DFS pseudo opcode, you must still
place the array where it will not get executed as code, and like-
wise, since the data will be stored within your program, programs
which use the DFS statement are not ROMable.  DFS, incidently,
can be used to define single variables as well as arrays.  Simply
use DFS $1.

INITIALIZING ARRAYS AT ASSEMBLY TIME.

     Sometimes it is necessary to initialize an array at assembly
time.  For instance, you may need to store a data table in memory,
or initialize some string, or define some one time initialization
data.  None of the methods discussed so far allow for this.  The
memory space was allocated but no particular values were stored
in the array.  Typically, you will need to store two types of data in
an array.  Either numeric data (be it binary, decimal, or hex) or
string data (ASCII characters).  Memory can be initialized with
hexadecimal data by using the HEX pseudo opcode.  This pseudo
opcode is particularly useful in setting up tables.  The HEX pseudo
opcode is used in your program as follows:

                  JMP LBL
          ARRAY   HEX 00010203
          LBL     LDA ARRAY
                  STA $0
                  BRK
                  END
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In this example, the accumulator is loaded with the value con-
tained at location ARRAY, which is zero.  The next instruction
stores the accumulator at location $0 in memory.  The HEX
pseudo opcode expects two hex digits for each entry, otherwise
you will get an error.  You will note that two digits had to be typed
for each hexadecimal value (complete with leading zeros) in the
previous example.  Each value (starting at the first value in the
hex string, naturally) is stored in successive memory locations.

     To initialize some memory locations with ASCII data you
should use the ASC pseudo opcode.  It is used as follows:

                  JMP LBL
          ARRAY   ASC "HI THERE"
          LBL     LDA ARRAY
                  JSR $FDED
                  LDA ARRAY+1
                  JSR $FDED
                  LDA ARRAY+2
                  JSR $FDED
                  LDA ARRAY+3
                  JSR $FDED
                  LDA ARRAY+4
                  JSR $FDED
                  LDA ARRAY+5
                  JSR $FDED
                  LDA ARRAY+6
                  JSR $FDED
                  LDA ARRAY+7
                  JSR $FDED
                  BRK
                  END

In case you are wondering, this program prints the message "HI
THERE" on the video screen (without the quotes).  The ASCII
string following the ASC pseudo opcode must be enclosed in
quotes or apostrophes.  For now, always use the quotes.  The use
of the apostrophe will be discussed later.

     What happens if you want to include a quote within the
quoted string?  Simply double up the quotes to get a single quote
character stored in memory.

     EXAMPLE:

          ASC "HOW'S ""THIS"""

The first occurrence of the quote establishes the quote as the
"delimiter" character.  Since the quote is the delimiter, apos-
trophes can freely appear in the string.  To include a quote within
a quoted string use two quotation marks in succession.  This is a
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signal to LISA that the quote is not actually a delimiter, but the
quote character.  The above example would generate the following
charters in memory:

          HOW'S "THIS"

     Now that you can reserve memory for array storage, how
are array elements accessed?  Accessing individual elements is
very easy.  You use the address of the first element of an array
and add in a displacement to this address.  For example, if you
want to access the tenth element of the array ARRAY, you would
use ARRAY+$9 as your address (remember, arrays in assembly
language start with an index of 0).  Several of the previous exam-
ples have used this method for accessing array elements.  This,
however, is a static displacement, meaning that the address
remains constant at run time, and is calculated only at assembly
time.  Thus, if you try a statement of the form;

          LDA ARRAY+I

your program will not add the contents of memory location I to
the address of ARRAY and load the accumulator from that loca-
tion.  Rather, LISA will immediately add the address of I to the
address of ARRAY and use that as the location from which the
accumulator will be loaded.  If the value contained in I was stored
at location $1000 and the array ARRAY began at location $2000,
the LDA ARRAY+I statement would load the accumulator from
location $3000 which is the address formed by the computation
of ARRAY+I.  So how does one simulate the variable index
feature of arrays found in high-level languages?  To get that ques-
tion answered, read on...

USING INDEX REGISTERS TO ACCESS ARRAY
ELEMENTS.

     The 6502 X- and Y-index registers can be used to dynami-
cally access elements of an array.  This type of operation is known
as indexing, hence the name index register.  When you use the
indexed by X or indexed by Y addressing modes, the following
procedure is carried out:

     1) Add the contents of the desired index register to the
        address that follows the instruction.

                              8-10

*****************************************************************

     2) Use this address as the actual address when referencing
        memory.  To specify the indexed by X addressing mode,
        you use the syntax:

          <mnemonic> <address expression>,X

          EXAMPLES:
                  LDA LBL,X



                  STA ARRAY,X
                  ADC $1,X
                  SBC $FFFF,X

To specify the indexed by Y addressing mode, you use the syntax:

          <mnemonic> <address expression>,Y

          EXAMPLES:
                  LDA LBL,Y
                  STA ARRAY,Y
                  ADC $1,Y
                  SBC $FFFF,Y

     Now consider the following examples:
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          LDX #$1
          LDA ARRAY,X   ;LOADS ACC FROM LOCATION ARRAY+$1
          LDY #$FF
          STA STRING,Y  ;STORES ACC AT LOCATION STRING+$FF

     Nothing really special happened here.  The program loaded
the accumulator from location ARRAY+$1 and then stored it at
location STRING+$FF.  We could have done this without using
the index registers.

     The beauty of the indexed addressing modes is that the X-
and Y-registers can be changed under program control.  As an
example, suppose you want to clear the 256 bytes starting at
location ARRAY (clearing an array means each element gets set
to zero).  To perform this operation, you could use the code:

                  LDX #$0         ;INIT FOR 256 BYTES
                  TXA             ;SET ACC = 0
          LOOP    STA ARRAY,X     ;STORE ZERO INTO MEMORY LOC
                  INX             ;MOVE TO NEXT LOCATION
                  BNE LOOP        ;DONE YET?
                  BRK             ;IF SO, QUIT
          ARRAY   DFS $100        ;ARRAY STORAGE BEGINS HERE
                  END

In this example, the X-register and the accumulator are loaded
with $0.  The accumulator is then stored at location ARRAY+X.
Since the X-register contains zero, the accumulator is simply
stored at location ARRAY.  After this is accomplished the X-reg-
ister is incremented by one, and now it contains the value one.
Since the last result obtained was one, not zero, the BNE instruc-
tion causes a branch to location LOOP where once again the
accumulator is stored at location ARRAY+X.  The difference is
that the X-register now contains one so the accumulator is stored
at location ARRAY+$1.  This loop is repeated over and over
again until the X-register contains the value $FF.  At that point
incrementing the X-register will give you zero which will cause



the loop to terminate.

     Since the X- and Y-registers are only eight bits long, you are
limited to a range of 256 bytes when using the indexed addressing
modes.  For most applications this is sufficient (and, in fact, for
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strings it is ideal).  If you need to access more than 256 bytes in
an array, read on: the next couple of sections will describe how.

INDIRECT ADDRESSING MODE.

     The indirect addressing mode is a special addressing mode
used only by the JMP instruction.  It is presented here only
because the discussion of the indirect indexed by Y and the
indexed by X indirect addressing modes build on the concept of
indirect addressing.

     An indirect address is the address of the address of the
desired location.  Sound confusing?  The following examples may
help.

          JMP $800        ;JUMPS TO LOCATION $800
          JMP ($800)      ;JUMPS TO THE ADDRESS CONTAINED
                          ;IN BYTES $800 AND $801.
                          ;LOCATION $800 CONTAINS THE
                          ;LOW ORDER BYTE OF THE ADDRESS
                          ;AND $801 CONTAINS THE HIGH
                          ;ORDER BYTE OF THE ADDRESS.

For instance, if location $800 contained $4 and location $801
contained $09, then a jump would be made to location $904.  This
addressing mode allows you to simulate the CASE statement
which appears in many languages (the ON...GOTO is the equiv-
alent of the CASE statement in BASIC).  In the following program,
a jump will be made to location $800 if the X-register contains
$0, to location $900 if the X-register contains $2, and to location
$1000 if the X-register contains $4.

                  LDA LOCADR,X
                  STA JMPADR
                  INX
                  LDA LOCADR,X
                  STA JMPADR+$1
                  JMP (JMPADR)
          JMPADR  DFS 2           ;RESERVE TWO BYTES FOR JMPADR
          LOCADR  HEX 0008        ;ADDRESS TABLE IN BYTE
                  HEX 0009        ;REVERSEE ORDER
                  HEX 0010
                  END
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The result of this program, if X contains 1, 3, or 5, is usually
garbage.  Why on earth would anyone want to make such a simple
problem so complex when the following code accomplishes the
same thing?

                  CPX #0
                  BNE LBL0
                  JMP $800
          LBL0    CPX #2
                  BNE LBL1
                  JMP $900
          LBL1    JMP $1000

After all, the latter method takes less memory and seems much
simpler to program.  For this simple example, yes, the latter
method is probably better, but keep in mind, for every additional
jump you wish to handle, you need to add seven bytes to the
latter version (a compare, a branch, and a jump instruction) and
only two bytes to the former program segment (an address).  The
break-even point (in terms of code) is between four and five
jumps.

     Indirect jumps are useful for controlling the flow of a program
in ways other than simulating a CASE statement.  For example,
suppose you want to write a character output routine for the
APPLE II computer that will output the character in the accumu-
lator to the Apple video screen.  Once this task is accomplished,
suppose you wish to expand your routine a little to allow output
to a printer, modem, plotter, etc.  Yet, you wish to keep the same
entry point, so that a program that outputs data to the screen can
just as readily output it to the printer.  This can be accomplished
readily by setting up a flag byte somewhere that outputs data to
the screen if the flag byte is zero, to the printer if the flag byte is
one, to the modem if the flag byte is two, etc.  The routine to
handle all this might be:

          PUTCHR  PHA             ;SAVE CHARACTER TO BE OUTPUT
                  LDA     FLAG    ;SEE WHERE THE OUTPUT GOES
                  BEQ     SCROUT  ;OUTPUT TO THE SCREEN IF 0
                  CMP     #1
                  BEQ     PRTOUT  ;OUTPUT TO PRINTER IF 1
                  CMP     #2
                  BEQ     MODEM   ;OUTPUT TO MODEM IF 2
                  ETC...

As before, this method works quite well if there are only a few
types of output devices.  However, there are two problems with
this method.  First, you cannot anticipate all the devices which will
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be attached to a computer when writing this type of program.  The
second problem with this approach is that peripheral initialization
has not been taken into account.  With some peripherals you must
jump to an initialization address the first time the peripheral is
accessed and then to a "normal" entry address thereafter.

     The indirect addressing mode can solve all of these prob-
lems.  Instead of reserving a memory location for a flag register,
let's reserve two memory locations to contain the address of the
device handler we wish to access.  Let's just arbitrarily choose
locations $36 and $37 in zero page to hold the low and high order
bytes (respectively) of the address of the routine we wish to
access.  Normally, these two locations will contain the address of
our video output routine.  When we wish to direct the output to the
printer, we simply place the low-order byte of the address of the
printer routine in location $36 and the high-order byte of the
address of the printer routine in location $37.  Our character output
routine will now consist of exactly one instruction, a "JMP ($36)"
instruction.  Jumping to this instruction will cause the program to
transfer control to the currently active device.

     How does using the indirect jump solve the two aforemen-
tioned problems?  The first problem (not knowing which devices
will eventually be used with the computer) is not a problem at all.
The indirect jump I/O handler takes all devices into account.  If
you wish to output data to some new type of device, all you need
to do is load the address of the device handler into locations $36
and $37.

     The second problem (device initialization) is also easy to
handle.  When a device is turned, on the address of its initialization
routine is loaded into locations $36 and $37.  The initialization
routine initializes the device and then loads the address of the
normal driver into locations $36 and $37.  This causes subsequent
accesses to jump directly to the normal entry point of the device
handler.

     More details on this type of operation will be considered
later.  For now, the concept of indirect addressing is all that is
important.

INDIRECT INDEXED ADDRESSING.

     Indirect addressing is only available for the JMP instruction
and is not available for the loads, stores, compares, etc.  For these
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types of instructions, two composite forms of indirect addressing
are available; indirect indexed by Y addressing and indexed by
X indirect addressing.



     The indirect indexed addressing mode is actually two
addressing modes in one.  It combines the indirect addressing
mode with the indexed by Y addressing mode.  The effective
address is computed by going to the address specified after the
opcode, and getting the indirect address stored there and in the
succeeding location.  Once this indirect address is obtained, the
value contained in the Y-register is added in to give the final,
effective address.  Note that if the Y-register contains zero, true
indirect addressing is performed.

     The indirect indexed by Y addressing mode has one further
restriction.  The address at which the indirect address is stored
must be a zero page location.  Accordingly, all instructions which
use the indirect indexed by Y addressing mode are two bytes long
(one byte for the opcode and one byte for the zero page address).
Also, should you use a symbolic reference, it must be declared
using the EPZ pseudo opcode or you will get an error.

     EXAMPLE OF INDIRECT INDEXED BY Y ADDRESSING
MODE:

                  LDA #$0         ;INIT FOR LOCATION $900
                  STA $FE         ;L.O. BYTE IN LOCATION $FE
                  LDA #$9         ;
                  STA $FF         ;H.O BYTE IN LOCATION $FF
                  LDY #$0         ;INIT TO START AT LOCATION $900
                  TYA             ;INIT ACC TO ZERO
          LOOP    STA ($FE),Y     ;STORE AT LOCATION POINTED AT
                  INY             ;BY ($FE,$FF) + CONTENTS OF Y
                  BNE LOOP        ;GO TO NEXT, DONE YET?
                  BRK             ;IF SO; QUIT
                  END

This program should look familar; it's the memory clear routine
which we used earlier with the straight indexed by X and Y
addressing modes.

     So far, we haven't really done much other than make the
solution more complex (by adding indirection), and we still can't
access more than 256 bytes at a time.  To give a preview of things
to come, it is possible to increment the two memory locations $FE
and $FF (a sixteen-bit memory increment).  With this in mind we
can leave the Y-register at zero and simply perform an extended
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increment on the memory locations $FE and $FF.  Since this is a
sixteen-bit address, you can access any memory location in
memory by using this technique.  Incrementing sixteen bits will be
described in later chapters, so file this knowledge away for a while.

INDEXED INDIRECT ADDRESSING MODE.

     In the indirect addressing mode, the indirect address was
determined and then the Y-register was added to this address to



give an effective address.  As the name implies, the indexing (by
the Y-register) is performed after the indirect address calculation.

     Indexed indirect addressing, as its name implies, performs
the indexing operation first.  This addressing mode uses the X-
index register and has the following syntax:

     <mnemonic> (<address>,X) The contents of the X-reg-
ister are added to whatever value the address expression may
have.  The resulting zero page address (wrapping around if nec-
essary) and the following byte contain the address of the location
to be used.

     The indexed by X,indirect addressing mode would probably
be useful when you have a table of pointers in page zero and
need to access different sections of memory depending upon
some value in the X-register.  Zero page, however, is a limited
resource and using it to hold large tables is not a good idea.  This
author, after programming the 6502 for three years, has needed
to use the indexed by X, indirect addressing mode only once or
twice.  Further uses of the indexed by X, indirect addressing mode
will be left to the discovery of the reader.

     Since indexed indirect addressing is not used nearly as often
as indirect indexed addressing, a lengthy discussion of this
addressing mode will not follow.

     Whenever you want to perform an indirect load, store, or
other operation, you can use the indirect indexed by Y addressing
mode or the indexed by X,indirect addressing mode with the
respective register set to zero.

     Indirect addressing techniques are very useful and give the
6502 microprocessor quite an advantage over other processors
which do not have this addressing mode available.  Since this
concept will be used throughout the rest of this book, make sure
that you understand this addressing mode before proceeding.
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                            CHAPTER 9

                      LOGICAL, MASKING, AND
                         BIT OPERATIONS

NEW INSTRUCTIONS:

     AND  ORA  XOR/EOR  BIT
     ASL  LSR    ROL    ROR

GENERAL.

     In the wonderful world of computers, data is not always
treated as characters and numbers.  As such, arithmetic and com-
parisons (the operations required for operation on numbers and



characters) do not prove sufficient for all computer applications.
One important data type, which has not yet been discussed much,
is the Boolean data type.  Arithmetic has no meaning for the Boo-
lean data type, and, therefore, some new operations have to be
included in our basic instruction set.

     There are four basic Boolean operations.  They are comple-
ment, AND, OR, and exclusive-OR.  The AND and OR operations
should already be familar to BASIC programmers, as these
operations are included in the BASIC instruction set.  The com-
plement and exclusive-OR operations will probably prove com-
pletely foreign.  Even the AND and OR operations, which sound
familar to the BASIC programmer, are actually a little different
from their BASIC counterparts.

     In order to help make Boolean functions easier to under-
stand, this book will use "truth tables" to help demonstrate the
actions of the various functions.  A truth table is no more than a
listing of the possible output values for all possible inputs.  A func-
tion may only have one output value (by definition), but it may
have as many input values as desired.  In our Boolean functions,
all functions will be restricted to one or two input values and only
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one output value.  Since Boolean values are either false or true
(represented by zero or one respectively), single input functions
can produce only one of two outputs.  Likewise, two input Boolean
functions can produce one of four output values (not necessarily
different).

COMPLEMENT FUNCTION.

     The complement function is a one-input function.  If you input
a bit, the complemented (i.e., opposite) value is returned.  If you
pass the complement function the true value (one), then the false
value (zero) is returned.  If you pass the complement function the
false value (zero), then the true value (one) is returned.  The com-
plement function truth table is shown in table 9-1.

     Table 9-1.  Complement Function Truth Table

          ---------------------- 
          Input bit   Output bit
          ---------------------- 
              A           X
             ---         --- 
              0           1
              1           0

     Table 9-1 (above) simply states that if you give the comple-
ment function a value "A" of 0, you will be returned a value "X"
of 1.  Conversely, if you pass the complement function a value "A"
of 1 then you will be returned a value "X" of 0.  The complement
function is sometimes called the 'NOT' function (i.e., NOT TRUE



is false and NOT FALSE is true), and sometimes it is called the
"one's complement."

AND FUNCTION.

     The AND operation requires two input values; it returns one
result value.  The result returned is TRUE if and only if the two
input values are true.  The result is FALSE otherwise.  The AND
function truth table is shown in table 9-2.
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     Table 9-2.  AND Function Truth Table
          -------------------------- 
          Input bits     Output bits
          ------------ ------------- 
            A     B           X
           ---   ---         --- 
            0     0           0
            0     1           0
            1     0           0
            1     1           1

     Table 9-2(above) states that if A and B are 1 (true), then X
is 1; if A or B is 0 (false), then X is 0.

     Obviously, the AND function has uses in extended compar-
isons (e.g., simulating IF((A=B) AND (C<=D)) ).  What is prob-
ably not so clear is the AND function's masking abilities.  The AND
function allows you to force a bit off, should this action be
required.  Assuming the input A to be variable, you can always
force the output to become zero by setting the input B to zero.  By
setting input B to one, you will pass A unchanged.  By studying
the truth table, you will notice that whenever B is zero, the output
is also zero.  Also, whenever B is one, the output corresponds
exactly to the A input.  This feature is known as "masking" and
will be used considerably later on.

OR FUNCTION.

     Like the AND function, the OR function requires two inputs
and produces a single bit output.  The OR function returns true if
A or B (or both) is true, and returns false otherwise (i.e., if A and
B are both false).  The OR function truth table is shown in table
9-3.

     Table 9-3.  OR Function Truth Table
          -------------------------- 
          Input bits     Output bits
          ------------ ------------- 
            A     B           X
           ---   ---         --- 
            0     0           0
            0     1           1
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            1     0           1
            1     1           1

     The OR function has the obvious use of simulating the "IF
(A=B) OR (C<=D)" statement, but, just like the AND function,
the OR function has an additional masking use.  If A is a variable,
then OR'ing A with B, when B is zero, always returns A.  OR'ing
A with B, when B is one, always returns one.  This function allows
you to force a bit on.  This masking function will prove to be very
useful later on.

EXCLUSIVE-OR FUNCTION.

     The exclusive-OR function is another two-input, single-out-
put type function.  It returns true if A or B, but not both, is true.  It
returns false if A and B are both true or A and B are both false.
The exclusive-OR (often abbreviated XOR) function truth table is
shown in table 9-4.

     Table 9-4.  Exclusive-OR Function Truth Table
          -------------------------- 
          Input bits     Output bits
          ------------ ------------- 
            A     B           X
           ---   ---         --- 
            0     0           0
            0     1           1
            1     0           1
            1     1           0

     The XOR function has two interesting features.  First, in
masking operations, it can be used to invert (i.e., complement)
the desired input.  In this mode, if B is zero, A is passed
unchanged.  If B is one, the result of the XOR function is the
complement of A.  This can be verified by studying the XOR truth
table.

     The XOR function is also a "not equals" function.  XOR
returns false if A equals B, and XOR returns true if A does not
equal B.  Although the 6502 CMP instruction can be used for this
type of testing, the XOR function is necessary when the contents
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of the carry flag cannot be modified.  The CMP instruction modifies
the carry flag whereas the XOR function does not.

BIT STRING OPERATIONS.

     So far, all logical functions have been defined in terms of



one or two input bits and one output bit.  Unfortunately, the 6502
(being an eight-bit microcomputer) works with eight bits at a shot.
As such, the logical operations have to be defined in terms of
eight bits.

     The process used to logically operate on eight bits is known
as the "bit-by-bit" operation.  To perform a "bit-by-bit" logical
operation, you must take two bytes, perform the operation on bit
zero of each byte, and store the result in bit zero of the result
byte.  You then perform the operation on bit one of each byte and
store the result in bit one of the result byte.  This process is
repeated for bits two, three, four, five, six, and seven.

          (10011110) AND (11000111) = (10000110)
          (11110000) OR  (00001111) = (11111111)
          (11001100) XOR (11110000) = (00111100)
                     NOT (11011011) = (00100100)

INSTRUCTIONS FOR LOGICAL OPERATIONS.

AND INSTRUCTION.

     The 6502 allows you to AND the value in the accumulator
with a value in memory or a constant.  The result is left in the
accumulator and the Z and N flags are set accordingly.  The 6502
instruction mnemonic is AND.

     EXAMPLES:

          LDA #$FF  - LOAD ACC WIUH $FF     1111 1111
          AND #$0F  - "AND" ACC WITH $F     0000 111
                    - RESULT LEFT IN ACC    --------- 
                      IS $F                 0000 1111

          LDA #$2F  - LOAD ACC WIUH $2F     0010 1111
          AND #$01  - AND WITH $1           0000 0001
                    - RESULT LEFT IN ACC    --------- 
                      IS $1                 0000 0001
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     The N flag is set if bit seven of the result is one.  The zero
flag is set if the result of the AND operation is zero.  One inter-
esting use of the AND instruction is to test to see if a bit is set or
not.  For instance, if you want to see if bit zero of the accumulator
is set, simply AND the accumulator with the value $1.  If bit zero
is set (i.e. one), the accumulator will contain one after the AND
operation, and likewise the Z flag will be reset, so you can use
the BNE instruction to test for this.  If bit zero of the accumulator
is not set, the accumulator will contain zero after the AND oper-
ation and the BNE test will fail.  To test whether or not a memory
location contains a zero or one in bit zero, load the accumumator
with the constant $1 and then AND the accumulator with that
memory location.



     The bit test feature of the AND instruction is very useful,
except that the contents of the accumulator are modified.  When
performing simple bit tests, it is sometimes convenient to leave
the contents of the accumulator alone.  This can be accomplished
by the use of the BIT (BIt Test) instruction.  The BIT instruction
AND's the accumulator with an absolute or zero page memory
location (only!) and the results of this AND operation are used to
set the N, Z, and V flags.  The flags are set according to the
following rules:

     1) Bit seven of the memory location is loaded into the N flag
        (not the result of memory bit seven AND ACC bit seven)

     2) Bit six of the memory location is loaded into the V flag.

     3) The result of ACC AND memory is used to set the Z flag
        (identical to the AND instruction).

     The BIT instruction is especially useful for input/output hand-
shaking and control.  This instruction will be discussed in more
detail in later chapters.

ORA INSTRUCTION.

     To perform the logical OR function, the 6502 ORA instruction
(OR Accumulator) is used.

     EXAMPLES:

          LDA #$00 -LOAD ACC WITH $0      0000 0000
          ORA #$FF -OR ACC WITH $FF       1111 1111
                   -RESULT OF $FF IS      --------- 
                   -LEFT IN THE ACC       1111 1111
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          LDA #$04 -LOAD ACC WITH $4      0000 0100
          ORA #$30 -OR ACC WITH $30       0011 0000
                   -THE RESULT OF $34     --------- 
                   -IS LEFT IN THE ACC    0011 0100

XOR/EOR INSTRUCTION.

     The standard 6502 exclusive-OR mnemonic is "EOR."  Since
XOR is frequently used in the world of digital computers, LISA
supports the use of both XOR and EOR as mnemonics for the
exclusive-OR function.  Both generate identical code; the choice
of which mnemonic to use is strictly up to you.

     EXAMPLES:

          LDA #$AA -LOAD ACC WITH $AA     1010 1010
          XOR #$01 -XOR WITH $01          0000 0001
                   -RESULT IS $AB WHICH   --------- 
                   -IS LEFT IN THE ACC    1010 1011



          LDA #$AA -LOAD ACC WITH $AA     1010 1010
          EOR #$01 -XOR WITH $01          0000 0001
                   -RESULT ($AB) IS       --------- 
                   -LEFT IN THE ACC       1010 1011

COMPLEMENTING THE ACCUMULATOR.

     The 6502 does not have a complement instruction in its
basic instruction set.  Since the XOR function can be used to invert
selected bits, the XOR instruction will be used to invert the accu-
mulator.  This is accomplished by exclusive-OR'ing the accumu-
lator with the constant $FF.

     EXAMPLES:

          LDA #$00 -LOAD ACC WITH $00     0000 0000
          XOR #$FF -INVERT ACC            1111 1111
                   -RESULT ($FF) IS       --------- 
                   -LEFT IN ACC           1111 1111

          LDA #$AA -LOAD ACC WITH $11     1010 1010
          XOR #$FF -INVERT ACC            1111 1111
                   -RESULT ($55) IS       --------- 
                   -LEFT IN ACC           0101 0101

          LDA #$55 -LOAD ACC WITH $55     0101 0101
          XOR #$FF -INVERT ACC            1111 1111
                   -RESULT ($AA) IS       --------- 
                   -LEFT IN ACC           1010 1010
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MASKING OPERATIONS.

     Up to this point, the discussion of AND, OR, and XOR/EOR
has been rather academic.  Why you would want to use these
instructions, as well as when you should use them, has not really
been addressed.  Setting specific bits (using the ORA instruction),
clearing specific bits (using the AND instruction), and inverting
specific bits (using EOR/XOR) seem "neat," but of what practical
value are they?

MASKING OUT.

     Suppose memory location VAR contains two distinct values,
one value in the high-order nibble and another value in the low-
order nibble.  In a particular application, we may be interested
only in the value contained in the low-order four bits.  The high-
order four bits should be set to zero.  Solving this problem does
not prove to be too difficult.  By loading the accumulator from
location VAR; then AND'ing the accumulator with the constant
$0F, the high-order nibble is "masked out" leaving zero in the
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high-order (H.O.) four bits and the low-order (L.O.) nibble in the
low-order four bits.

     EXAMPLE:

          LDA VAR    -GET VAR INTO ACC
          AND #$0F   -MASK OUT H.O. NIBBLE LEAVING L.O. NIBBLE

     Another problem frequently encountered is that of packed
data.  Suppose, in order to save memory, you have packed eight
Boolean values (each requiring one bit) into one byte.  Some-
where within the program you wish to test a Boolean flag to see
if it is true or false.  Loading the accumulator with that particular
byte and then using the BTR and BFL instructions is not sufficient.
The BTR branch would be taken if any of the bits are set (remem-
ber, BTR is the same as BNE).  Likewise, BFL will only be taken
if all of the bits are false (because the BEL instruction is really the
BEQ instruction).  Some means of testing only one bit is highly
desirable.  This can be accomplished using the AND instruction.
If you want to test a particular bit, simply mask out all the other
bits.  If the desired bit is false (i.e. zero), the zero flag will be set
and the BFL instruction can be used to test this condition.  If the
desired bit is true (i.e. one), the AND'ing operation will leave a
one bit set somewhere within the byte and the BTR instruction
can be used to test this condition.  EXAMPLE:

          TO TEST BIT #0
               LDA BITS
               AND #%1
               BTR THERE

          TO TEST BIT #1
               LDA BITS
               AND #%10
               BTR THERE

          TO TEST BIT #2
               LDA BITS
               AND #%100
               BTR THERE

          TO TEST BIT #3
               LDA BITS
               AND #%1000
               BTR THERE
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          TO TEST BIT #4
               LDA BITS
               AND #%10000



               BTR THERE

          TO TEST BIT #5
               LDA BITS
               AND #%100000
               BTR THERE

          TO TEST BIT #6
               LDA BITS
               AND #%1000000
               BTR THERE

          TO TEST BIT #7
               LDA BITS
               AND #%10000000
               BTR THERE

     Another use of the AND instruction is that of the MOD func-
tion.  (The MOD function is the remainder function; that is, X MOD
Y returns the remainder after the division of X and Y.)  AND'ing
with $1 returns the value in the accumulator MOD two.  AND'ing
the accumulator with $3 returns the value in the accumulator
MOD four.  AND'ing with $7 returns the value in the accumulator
MOD 8.  AND'ing with $F returns the value in the accumulator
MOD 16.  AND'ing with $1F returns the value in the accumulator
MOD 32.  AND'ing with $3F returns the value in the accumulator
MOD 64.  AND'ing with $7F returns the value in the accumulator
MOD 128.  AND'ing with $FF simply returns the value in the
accumulator.

     This feature can be utilized in several instances.  In the pre-
vious example, testing a particular bit, the programmer had to
know which bit needed testing.  Sometimes it would be nice if the
program itself could decide which bit to test.  In this capacity, a
subroutine could be made of the bit testing procedure, and some
dynamic value could be passed to the subroutine specifying
which bit is to be tested.  If the value is passed in the X-register,
then the data at location 'BITS' can be tested against a value
contained in a table.  The indexed by X addressing mode could
be used to specify which data byte is to be used as a mask.
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     EXAMPLE:

          TSTBIT  LDA BITS
                  AND TBL,X
                  RTS

          TBL     BYT %00000001
                  BYT %00000010
                  BYT %00000100
                  BYT %00001000
                  BYT %00010000
                  BYT %00100000



                  BYT %01000000
                  BYT %10000000

     Now, to test a particular bit, simply load the X-register with
the bit number of the desired bit (0-7) and JSR TSTBIT.  Upon
return, the zero flag will be set if the particular bit is one, and the
zero flag will be reset if the particular bit is zero.  There is one
slight problem with this scheme.  What happens if the X-register
contains a value outside the range 0-7?  Obviously, the memory
locations past the eighth byte in the table will be used as the
mask.  This usually gives you junk as a result.  What is required
is some means of insuring that the value in the X-register never
exceeds $7.  There are two simple ways of accomplishing this
task.  The first is to explicitly compare the X-register to eight, and
abort if the X-register is greater or equal to eight.  The other
method is to AND the value in the X-register with #$7 which will
return the original contents MOD eight.  The AND'ing version is
a little cleaner and should be used if you can tolerate testing bit
zero when the X-register contains eight.  It should be noted that
the AND instruction can be used to force 'wrap around' during
increments, decrements, additions, etc., long before $FF is
reached.

     Since the X-register cannot be directly AND'ed with a mem-
ory location, we will have to transfer the X-register to the accu-
mulator, AND the accumulator with a value in the table, and then
transfer the value back to the X-register.  Some of this work can
be eliminated by passing the index to the subroutine in the accu-
mulator to begin with.  The completed subroutine would look
something like:
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     EXAMPLE:

          TSTBIT  AND #%0111
                  TAX
                  LDA BITS
                  AND TBL,X
                  RTS

          TBL     BYT %00000001
                  BYT %00000010
                  BYT %00000100
                  BYT %00001000
                  BYT %00010000
                  BYT %00100000
                  BYT %01000000
                  BYT %10000000

     The AND instruction can also be used to set one of the
particular Boolean values to false, since the AND instruction can
be used to force a particular bit to zero.  The following is a program
which is used to set the desired bit to false within the byte 'BITS.'
As before, the accumulator contains the index of the element that



is to be set to false.

     EXAMPLE:

          SETFLS  AND #$7
                  TAX
                  LDA BITS
                  AND TBLS,X
                  STA BITS
                  RTS

          TBLS    BYT %11111110
                  BYT %11111101
                  BYT %11111011
                  BYT %11110111
                  BYT %11101111
                  BYT %11011111
                  BYT %10111111
                  BYT %01111111

     Note that there are two differences between this program
and the last.  First, the value is stored back into BITS after the
AND operation.  This assures us that the value will be around
when we need it later on.  Second, the data in the table is inverted.
The data is inverted (as compared to the previous table) because
we do not want to mask out the undesired values, only the value
we wish set to false.
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MASKING IN.

     The 6502 ORA instruction can be used to force bits on.  This
feature allows us to set a particular value in our bit array to true.
The code to perform this operation is:

          SETRUE  AND #$7
                  TAX
                  LDA BITS
                  ORA TBL,X
                  STA BITS
                  RTS

          TBL     BYT %00000001
                  BYT %00000010
                  BYT %00000100
                  BYT %00001000
                  BYT %00010000
                  BYT %00100000
                  BYT %01000000
                  BYT %10000000

Once again, the index is passed in the accumulator and the
resultant value is stored in BITS.



     The ORA instruction has several other uses besides setting
Boolean variables to true.  It can be used, for instance, to see if
two or more bytes in memory are all equal to zero.  To perform this
function simply load the accumulator with the first byte, and then
OR the accumulator with each of the successive bytes.  Upon
termination, the Z flag will be set if all the bytes contained a zero
result.  If any of the bytes in question did not contain zero, the Z
flag will be reset.

     EXAMPLE:

                  LDA BYTE1
                  ORA BYTE2
                  ORA BYTE3
                  ORA BYTE4
                   .    .
                   .    .
                   .    .
                  ORA BYTEn
                  BEQ ALLZER

SHIFT AND ROTATE INSTRUCTIONS.

     The 6502 supports four shift and rotate instructions.  They
are: arithmetic shift left, logical shift right, rotate left, and rotate
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right.  These instructions, in their simplest form, operate directly
upon the accumulator contents.  This is the 6502 accumulator
addressing mode.

ARITHMETIC SHIFT LEFT (ASL) INSTRUCTION.

     The arithmetic shift left instruction shifts all the bits in the
accumulator one position to the left.  Bit zero is shifted into bit
one, bit one is shifted into bit two, bit two is shifted into bit three,
etc.  A zero is shifted into bit zero, and bit seven is shifted into the
carry flag.  The 6502 mnemonic for arithmetic shift left is 'ASL.'
When shifting the contents of the 6502 accumulator, this instruc-
tion does not have an operand.

     EXAMPLE OF ASL:

          MOVE THE LOW ORDER NIBBLE
          INTO THE HIGH ORDER NIBBLE

                  LDA VALUE
                  ASL
                  ASL             ;FOUR SHIFTS MOVE THE L.O.
                  ASL             ;FOUR BITS INTO THE H.O.
                  ASL             ;FOUR BITS (L.O. FOUR BITS
                  STA VALUE       ;BECOME ZERO)

Since the carry out of bit seven ends up in the carry flag, you can



use the BCC and BCS instructions to test for a 'shift overflow.'
Note (as demonstrated in the example) that the ASL instruction

                              9-14

*****************************************************************

          ASL
                 7   6   5   4   3   2   1   0
                ------------------------------- 
          C <- |   |   |   |   |   |   |   |   | <- 0
                ------------------------------- 

only shifts one bit.  If you need to shift more than one bit position,
you must execute several ASL instructions.

LOGICAL SHIFT RIGHT (LSR) INSTRUCTION.

     The logical shift right instruction shifts data to the right
(obviously).  Zero is shifted into bit seven, bit seven is shifted into
bit six, bit six is shifted into bit five, etc.  Bit zero is shifted into the
carry flag.  Suppose you have two BCD digits which you want to
separate into two bytes.  (i.e., the low-order nibble goes into the
first byte, and the high-order nibble goes into the low-order nibble
of the second byte, in both cases the high-order nibble of the
resulting bytes should be zero.)  It's very easy to get the low-order

          LSR
                 7   6   5   4   3   2   1   0
                ------------------------------- 
          0 -> |   |   |   |   |   |   |   |   | -> C
                ------------------------------- 

nibble into the first byte.  Just load the accumulator from the mem-
ory location containing the BCD value, then AND the accumulator
with $F and store the result in the first byte.

     EXAMPLE:

          LDA VALUE
          AND #$F
          STA LOC1

AND'ing the value with $F0 to get the high-order byte is not
entirely satisfactory, because the value we desire will still be in
the high-order nibble of the accumulator.  By using the LSR
instruction, this data can be moved down into the low-order four
bits of the accumulator, at which point the data can be stored in
the second byte of the destination address.

     EXAMPLE:

                  LDA VALUE
                  AND #$F0
                  LSR
                  LSR
                  LSR



                  LSR
                  STA LOC1+$1
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Since zeros are automatically shifted into bit number seven, after
the four LSR instructions are executed, the accumulator would
have all zeros in the high-order nibble anyway, so there is no need
for the extra AND #$F instruction.  BETTER CODE:

                  LDA VALUE
                  LSR
                  LSR
                  LSR
                  LSR
                  STA LOC1+$1

The final code segment might be:

                  LDA VALUE
                  AND #$F
                  STA LOC1
                  LDA VALUE
                  LSR
                  LSR
                  LSR
                  LSR
                  STA LOC1+$1

ROTATE LEFT (ROL) INSTRUCTION.

     The rotate left instruction is very similar to the arithmetic
shift left instruction, with one difference.  Instead of shifting zero
into bit number zero, the previous contents of the carry flag are
shifted into bit number zero; so for a rotate left, bit zero is shifted
to bit one, bit one is shifted to bit two, bit two is shifted to bit three,
... , bit seven is shifted into the carry, and the carry is shifted into
bit zero.  Note that if you execute nine rotate left instructions in a

          ROL
                 7   6   5   4   3   2   1   0
                ------------------------------- 
             --|   |   |   |   |   |   |   |   |<- 
            |   -------------------------------   |
            |                                     |
            |                   ---               |
             ----------------->| C |-------------- 
                                --- 

row, you end up with the value you started with in the accumulator.
The 6502 mnemonic for the rotate left instruction is ROL.
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ROTATE RIGHT (ROR) INSTRUCTION.

     This instruction rotates the accumulator right with the carry
flag going into bit seven and the carry out of bit zero ending up
in the carry flag.  The mnemonic for this instruction is ROR.  As

          ROR
                 7   6   5   4   3   2   1   0
                ------------------------------- 
             ->|   |   |   |   |   |   |   |   |-- 
            |   -------------------------------   |
            |                                     |
            |                   ---               |
             ------------------| C |<------------- 
                                --- 

with the ROL instruction, after nine rotates you end up with the
value you started with in the accumulator.

SHIFTING AND ROTATING MEMORY
LOCATIONS.

     Until now, all shifts and rotates have only been used with the
6502 accumulator.  The 6502 shift and rotate instructions can also
be used to shift or rotate data in memory locations, effectively
bypassing the accumulator (this is similar in operation to the INC
and DEC instructions).  If the operand field is not blank (which is
required for the accumulator addressing mode), the operand field
will be assumed to contain an absolute (or zero page) memory
address.  The contents of this memory location will be shifted or
rotated with the same results as would be obtained if the accu-
mulator had been operated upon.  The indexed by X addressing
mode is also available.

     EXAMPLES:

          ASL LOC1   -SHIFTS MEMORY LOCATION LOC1 LEFT
          LSR TEMP   -SHIFTS MEMORY LOCATION TEMP RIGHT
          ROL LBL+$1 -ROTATES MEM LOC. LBL LEFT
          ROR X+$1   -ROTATES MEM LOC. X+$1 RIGHT
          ASL        -SHIFTS THE ACCUMULATOR LEFT
          LSR        -SHIFTS THE ACCUMULATOR RIGHT
          ROL        -ROTATES ACC TO THE LEFT
          ROR        -ROTATES ACC TO THE RIGHT
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USING ASL TO PERFORM MULTIPLICATION.

     Shifting any number to the left one position is identical to
multiplying that number by its particular radix (i.e., base) For
example, if you shift the decimal number 93 to the left one
position you get 930 which is definitely ten times 93.  In the



same way, shifting a binary value to the left one position is the
same as multiplying it by two.  A double shift to the left is identical
to a multiplicauion by four; three shifts to the left, to a multipli-
cation by eight; four shifts to the the left, a multiplication by six-
teen; etc.  In general, multiplication by powers of two is very easy,
simply using one to seven ASL instructions to multiply by two,
four, eight, 16, 32, 64, or 128.

     EXAMPLES:

          1) MULTIPLY ACC BY EIGHT
                  ASL     ;TIMES 2
                  ASL     ;TIMES 4
                  ASL     ;TIMES 8

          2) MULTIPLY ACC BY 32
                  ASL     ;TIMES 2
                  ASL     ;TIMES 4
                  ASL     ;TIMES 8
                  ASL     ;TIMES 16
                  ASL     ;TIMES 32

You can test for overflow by sandwiching a BCS instruction
between each ASL instruction.  Should overflow occur (i.e., a carry
out of bit number seven), the carry flag will not necessarily be set
at the end of the shift left sequence, since the following ASL may
clear the carry flag.

     EXAMPLE:

          MULTIPLICATION BY 16, TESTING FOR OVERFLOW

                  ASL
                  BCS ERROR
                  ASL
                  BCS ERROR
                  ASL
                  BCS ERROR
                  ASL
                  BCS ERROR

     Often, the need arises to multiply by a constant other than
a power of two.  This is accomplished by breaking the multiplica-
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tion problem down into several distinct steps and adding the
results of these intermediate steps together.  For example, multi-
plying the accumulator by three could be broken down into a
multiplication by two and a multiplication by one (which is the
original value itself).

     EXAMPLE:

          MULTIPLICATION BY THREE



                  STA TEMP ;MAKE A TEMPORARY COPY
                  ASL      ;MULTIPLY ACC BY TWO
                  CLC      ;ADD IN THE ORIGINAL VALUE
                  ADC TEMP ;TO GET 2xACC + ACC = 3xACC

To multiply by some other constant is just as easy.  For instance,
multiplication by six breaks down to a multiplication by four plus
a multiplication by two.

     EXAMPLE:

          MULTIPLICATION BY SIX

                  ASL      ;GET ACCx2
                  STA TEMP ;AND SAVE
                  ASL      ;MULTIPLY ACC BY FOUR
                  CLC      ;ADD IN TEMP VALUE
                  ADC TEMP ;TO GET 2xACC + 4xACC = 6xACC

One very important multiplication is multiplication by ten.  This
particular multiplication will be used quite a bit when converting
between the binary and decimal bases.  A multiplication by ten
breaks down into a multiplication by two plus a multiplication by
eight.

     EXAMPLE:

          MULTIPLICATION BY TEN

                  ASL      ;MULTIPLY BY TWO
                  STA TEMP ;SAVE
                  ASL      ;MULTIPLY BY FOUR
                  ASL      ;MULTIPLY BY EIGHT
                  CLC      ;ADD IN TEMP VALUE
                  ADC TEMP ;TO GET 10xACC
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USING SHIFTS TO UNPACK DATA.

     In Chapter 2, a discussion of packed data was briefly pre-
sented.  Two BCD digits can be packed into one byte; eight Boo-
lean values can be packed into a single byte; etc.  Packing tech-
niques save you memory at the expense of execution time and
code complexity.

     Data is "unpacked" by masking out all of the unwanted bits
in a particular byte, and then shifting the data so that it is right-
justified in the byte.  A BCD number, for example, contains two
fields: the high-order decimal digit and the low-order decimal digit.
If you are interested in only the low-order decimal digit, all you
have to do is AND the value with $F.  This masks out all the
unwanted bits (the high-order nibble) leaving the desired data
right-justified.  Getting at the high-order digit is not quite as simple.



In this case, the data must be shifted to the left four times so that
it is right justified.  Zeros are automatically shifted into the high-
order nibble (refer to the discussion on shifts).

     But BCD is not the only case where data packing is per-
formed.  Some situations may require three data fields within a
single byte.  For example, you may have a Boolean value in bit
seven; an Apple slot number in bits four, five, and six; and a hex
value in the range $0-$F in the low-order nibble.  Getting at the 4-
bit value is easy, just AND the accumulator with $F.  Getting at the
three bits in the middle of the data structure is a little more com-
plicated.  First, you must shift the accumulator to the left four bits
to right-justify the data field and to eliminate the low-order four
bits.  Next, the accumulator has to be AND'ed with $7 to eliminate
the Boolean value and preserve the low-order three bits.

     EXAMPLE:

          UNPACKING THE MIDDLE FIELD

                  LDA VALUE
                  LSR           ;SHIFT RIGHT FOUR TIMES
                  LSR           ;TO RIGHT JUSTIFY FIELD
                  LSR           ;AND ELIMINATE L.O.
                  LSR           ;NIBBLE
                  AND #%0111    ;MASK OUT BOOLEAN VALUE

To unpack the Boolean field, you could perform seven LSR
instructions.  There is, however, a better way.  First, AND the
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accumulator with $80 to eliminate everything except the Boolean
value.  Next, shift the accumulator LEFT.  Whatever value is con-
tained in the Boolean variable will end up in the carry flag.  Now,
rotate the accumulator left to move the carry flag (i.e., the Boolean
value) into the low-order bit of the accumulator.

     EXAMPLE:

          UNPACKING THE BOOLEAN FIELD

                  LDA VALUE
                  AND #$80
                  ASL
                  ROL

Obviously, if you just want to test the boolean value, you do not
need to right-justify it.  You need only to use the BTR/BFL instruc-
tions after the AND #$80 (or even the BMI/BPL instructions after
the LDA value).

USING SHIFTS AND ROTATES TO PACK DATA.

     Having the capability to unpack data isn't particularly useful



if you cannot pack data as well.  Packing data is a little more
complicated than unpacking it, and can be accomplished in two
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steps.  First, the bits where the data is to be stored have to be
forced to zero.  This is accomplisied using the AND instruction.
Next, the data to be placed in the desired field has to be shifted
so that it is aligned properly.  The data is then OR'ed into the
zeroed field, resulting in a packed data record.

     EXAMPLE:

          PACKING THE SLOT # FIELD
          FROM THE PREVIOUS EXAMPLE

                  PHA             ;SAVE DATA TO BE PACKED
                  LDA VALUE
                  AND #%10001111  ;MASK OUT SLOT # FIELD
                  STA VALUE       ;SAVE
                  PLA             ;RESTORE ACC
                  ASL             ;ALIGN FIELDS
                  ASL
                  ASL
                  ASL
                  ORA VALUE       ;PUT INTO VALUE
                  STA VALUE

Additional packing techniques will be discussed as the need
arises.
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                           CHAPTER 10

                       MULTIPLE-PRECISION
                           OPERATIONS

GENERAL.

     Until now, all operations utilized have worked with only eight
bits.  For some operations this is fine.  For others, being limited to
eight bits is intolerable.  Nevertheless, the 6502 is limited to work-
ing with eight bits at a time.  In order to handle data types of larger
sizes, such as 16-bit integers and 32-bit floating point numbers,
we must break them up into several 8-bit operations.  For example,
a 16-bit addition is handled as two 8-bit additions.

MULTIPLE-PRECISION LOGICAL OPERATIONS.

     The multiple-precision logical operations (AND, OR, and
XOR) are the easiest to handle.  Assuming you have two 16-bit



operands at locations A, A1, B, and B1, the logical AND of A and
B is (A AND B), (A1 AND B1).  This simply means that you take
the data at location A and then AND it with the data at location
B.  The result is the low-order byte of the logical AND.  Next, the
data at location A1 is AND'ed with the data at location B1, which
gives the high-order byte of the result.

     EXAMPLE: 'AND' A WITH B AND STORE THE RESULT AT
C.

                  LDA A
                  AND B
                  STA C
                  LDA A+$1
                  AND B+$1
                  STA C+$1
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     The ORA and EOR (XOR) instructions are handled in a
similar manner.

     EXAMPLES:

                  LDA A
                  ORA B
                  STA C
                  LDA A+$1
                  ORA B+$1
                  STA C+$1

                  LDA A
                  XOR B
                  STA C
                  LDA A+$1
                  XOR B+$1
                  STA C+$1
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MULTIPLE-PRECISION SHIFTS AND ROTATES

     Shifts and rotates are not extended beyond one byte in a
manner similar to the simple logical instructions.  Consider the
ASL instruction.  If you were to shift the low-order byte one position
to the left, zero would end up in bit zero and the carry out of bit
seven would end up in the carry flag.  Now, if you were to perform
an ASL on the high-order byte, the carry out of the previous bit
seven (which would be in the carry) would not be shifted into bit
zero, as should happen with a 16-bit ASL.  Instead, zero would
once again be shifted into bit zero and the carry out of the low-



order byte would be ignored.

     This problem can be rectified by using a ROL instruction for
the high-order byte, instead of the ASL instruction:

                  ASL LOBYTE
                  ROL HOBYTE

In this case, the carry out of the low-order byte ends up in the
carry flag, and then the second instruction (ROL) shifts the carry
flag into the low-order bit of the high-order byte (just as we
expect).  Naturally, the high-order bit ends up in the carry flag.  A
three-byte ASL can be manufactured by tacking another ROL
instruction onto the end of this sequence:

                  ASL BYTE
                  ROL BYTE+$1
                  ROL BYTE+$2

Similarly, an "n"-byte ASL can be manufactured by tacking on
additional ROL instructions to the sequence.

                       MULTIPLE-PRECISION
                       SHIFTS AND ROTATES

                          TWO-BYTE ASL

              ASL
                 7   6   5   4   3   2   1   0
                ------------------------------- 
             --|   |   |   |   |   |   |   |   | <- 0
            |   ------------------------------- 
            |   LOW-ORDER BYTE
            |
            |                   --- 
             ----------------->| C |-------------- 
                                ---               |
              ROL                                 |
                 7   6   5   4   3   2   1   0    |
                -------------------------------   |
             --|   |   |   |   |   |   |   |   |<- 
            |   ------------------------------- 
            |   HIGH-ORDER BYTE
            |                   --- 
             ----------------->| C |
                                --- 
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MULTIPLE-PRECISION LOGICAL SHIFT-RIGHT
SEQUENCES.

     The multiple-precision logical shift right operation is handled
in a similar manner, except you must begin the process with the
high- order byte.  Remember, with a LSR instruction, zero gets



                          TWO-BYTE LSR

              LSR
                 7   6   5   4   3   2   1   0
                ------------------------------- 
          0 -> |   |   |   |   |   |   |   |   | - 
                -------------------------------   |
                HIGH-ORDER BYTE                   |
                                ---               |
             ------------------| C |<------------- 
            |                   --- 
            | ROR
            |    7   6   5   4   3   2   1   0
            |   ------------------------------- 
             ->|   |   |   |   |   |   |   |   |-- 
                -------------------------------   |
                LOW-ORDER BYTE                    |
                                ---               |
                               | C |<------------- 
                                --- 

shifted into the high- order bit and then the low-order bit gets
shifted into the carry flag.  A 2-byte LSR would be coded as:

                  LSR BYTE+$1
                  ROR BYTE

Similarly, a three-byte LSR would be coded as:

                  LSR BYTE+$2
                  ROR BYTE+$1
                  ROR BYTE

N-byte LSR's can be simulated by using the LSR instruction on
the high-order byte and then ROR all successive bytes.

MULTIPLE-PRECISION
ROTATE-LEFT SEQUENCES.

     The multiple-precision rotate-left operation is easily handled.
First, rotate the low-order byte, then the high-order byte (s).  A 16-
bit ROL could be written:

                  ROL BYTE
                  ROL BYTE+$1
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                       MULTIPLE-PRECISION
                       SHIFTS AND ROTATES

                          TWO-BYTE ROL

              ROL



                 7   6   5   4   3   2   1   0
                -------------------------------      --- 
             --|   |   |   |   |   |   |   |   | <- | C |
            |   -------------------------------      --- 
            |   LOW-ORDER BYTE
            |
            |                   --- 
             ----------------->| C |-------------- 
                                ---               |
              ROL                                 |
                 7   6   5   4   3   2   1   0    |
                -------------------------------   |
             --|   |   |   |   |   |   |   |   |<- 
            |   ------------------------------- 
            |   HIGH-ORDER BYTE
            |                   --- 
             ----------------->| C |
                                --- 

The carry is shifted into bit zero, as we expect; bit seven is shifted
into the carry, and then into bit eight because of the second ROL
instruction.  Finally, bit fifteen is shifted into the carry flag thereby
performing a 16-bit ROL.  A 3-byte ROL instruction is written:

                  ROL BYTE
                  ROL BYTE+$1
                  ROL BYTE+$2

MULTIPLE-PRECISION ROTATE-RIGHT
SEQUENCES.

     As with the LSR instruction, multiple-precision ROR
sequences must work on the high-order bytes first, and the low-
order bytes last.  A 16-bit ROR is written as:

                  ROR BYTE+$1
                  ROR BYTE

                          TWO-BYTE ROR

              ROR
                 7   6   5   4   3   2   1   0
       ---      ------------------------------- 
      | C | -> |   |   |   |   |   |   |   |   | - 
       ---      -------------------------------   |
                HIGH-ORDER BYTE                   |
                                ---               |
             ------------------| C |<------------- 
            |                   --- 
            | ROR
            |    7   6   5   4   3   2   1   0
            |   ------------------------------- 
             ->|   |   |   |   |   |   |   |   |-- 
                -------------------------------   |
                LOW-ORDER BYTE                    |
                                ---               |
                               | C |<------------- 
                                --- 
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And a 3-byte ROR is written as:

                  ROR BYTE+$2
                  ROR BYTE+$1
                  ROR BYTE

MULTIPLE-PRECISION UNSIGNED
ARITHMETIC.

     Being limited to one byte when performing arithmetic is
unthinkable.  Most of the time we need to represent values greater
than 255.  If 16-bit arithmetic were available, we could represent
values in the range 0-65,535; with 24 bits we could represent
values in the range 0-16,777,215; by using four bytes (32 bits),
numbers in excess of four billion could be represented.  Multiple-
precision arithmetic is handled in a manner similar to multiple-
precision logical operations.  You must perform the operations a
byte at a time.

     In order to perform extended precision arithmetic we must
have some mechanism for "capturing" all the lost data when an
arithmetic overflow (or underflow) occurs.  First, let's determine
how much data must be saved when an overflow occurs.
Obviously, the largest number obtainable when adding two 8-bit
numbers together is the value obtained by adding $FF and $FF.
Since the result of this sum, $1FE, or 510 decimal, requires nine
bits to represent it, we will need a 1-bit extension to perform
extended arithmetic operations.

     As you may recall, you can check the carry flag after an
addition; it will be set if an overflow (into the "ninth" bit) occurred
and reset otherwise.  As such, we can use the carry flag as our
ninth bit when performing arithmetic.  Fine, but how is this going
to allow us to perform arithmetic on 16, 24, or 32 bits?  Remember
our rules for unsigned addition?  One rule states that the carry
must be cleared before the addition takes place, because the
carry flag gets added in as part of the operand.  This means that
if the carry flag is set, then you do not end up with the sum of the
accumumator and the operand, but rather you get the sum of the
accumulator and the operand plus one.  Naturally, if the carry is
clear, you get the sum of the accumulator and the operand plus
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the carry flag (which is zero), thus giving you the true sum.

     In this manner, the carry flag becomes the 'carry out' of an
8-bit addition and will contain the value which must be added to
the addition of the high-order bytes in order to obtain the final



"adjusted" value.  In reality, the 6502 adds numbers the same way
you and I do, except it works with bytes instead of digits.  The
addition of the 16-bit quantities OP1 & OP2 with the sum being
stored in RESULT, would be written as:

                  CLC             ;ALWAYS BEFORE AN ADDITION
                  LDA OP1
                  ADC OP2
                  STA RESULT

                  LDA OP1+$1
                  ADC OP2+$1
                  STA RESULT+$1

Note that the carry flag is not cleared between the additions here!
Remember, the carry flag contains vital information for successful
multiple-precision addition.  A 3-byte addition operation would be
coded:

                  CLC
                  LDA OP1
                  ADC OP2
                  STA RESULT
                  LDA OP1+$1
                  ADC OP2+$1
                  STA RESULT+$1
                  LDA OP1+$2
                  ADC OP2+$2
                  STA RESULT+$2

and so forth for an 'n'-byte addition.

RULES FOR UNSIGNED N-BYTE ADDITION.

     1) Do not confuse these rules with any of the other arithmetic
        rules.

     2) Always clear the carry before performing the addition.

     3) Add the first bytes together and store the results.

     4) Add the second, third, ..., nth pairs of bytes together and
        store the results.  Do not clear the carry flag before these
        additions.

     5) After the nth addition, the carry flag will be set if an over-
        flow occurred, otherwise the carry flag will be cleared.
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MULTIPLE-PRECISION UNSIGNED
SUBTRACTION.

     Multiple-precision subtraction is handled in much the same



way as multiple-precision addition.  It is a logical extension of the
single-precision subtraction, and as such, you must set the carry
before the multiple precision subtraction takes place.  Once this
is accomplished, you subtract the low order bytes (storing the
results) and then the high order bytes (also storing the results).
Once the subtraction is complete, the absence of carry (i.e,
carry=0) means an underflow occurred, and the presence of
carry means thing went just fine.

     EXAMPLE OF TWO-BYTE SUBTRACTION:

          SEC             ;ALWAYS!
          LDA OPRND1      ;GET L.O. BYTE OF OPERAND #1
          SBC OPRND2      ;SUBTRACT L.O. BYTE OF OPERAND #2
          STA RESULT      ;SAVE IN L.O. BYTE OF RESULT
          LDA OPRND1+$1   ;GET H.O. BYTE OF OPERAND #1
          SBC OPRND2+$1   ;SUBTRACT H.O. BYTE OF OPERAND #2
          STA RESULT+$1   ;SAVE IN H.O. BYTE OF RESULT
          BCC ERROR       ;TEST FOR OVERFLOW

To generalize to n bytes simply stick more SBC instructions on
the end of the sequence.  Remember not to set the carry flag
between the multiple-precision subtraction sequences.

RULES FOR UNSIGNED MULTIPLE-PRECISION
SUBTRACTION.

     1) Do not confuse these rules with any of the other arithmetic
        rules.

     2) Always set the carry flag before a subtraction.

     3) Subtract the low-order bytes and store the results.

     4) Subtract the second, third, ..., nth bytes and store the
        results.

     5) After the nth bytes are subtracted, the carry will be clear
        if underflow occurred.  If the carry flag is set, then no
        overflow occurred.
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MULTIPLE-PRECISION SIGNED ARITHMETIC.

     Multiple-precision signed arithmetic is handled in a manner
identical to multiple-precision unsigned arithmetic.  When pre-
forming an addition, you must first clear the carry and then per-
form a byte-by-byte addition.  With subtraction, you first set the
carry and then perform a byte-by-byte subtraction.

     The difference lies in testing for overflow/underf low.  As with
the single-precision signed arithmetic, you must test the overflow
flag instead of the carry flag (remember, carry detects a carry out
of bit 7, overflow detects a carry out of bit 6).  The overflow (V) flag



will be set if overflow or underflow occurred.  The overflow flag
will be reset if overflow did not occur.  Note that the overflow flag
is set if an underflow occurred during a subtraction.  This is oppo-
site in practice to the use of the carry flag in unsigned arithmetic.

MULTIPLE-PRECISION DECIMAL ARITHMETIC.

     The 6502 can perform multiple-precision BCD arithmetic by
first setting the decimal flag.  After setting the decimal flag, follow
the conventions for unsigned addition or subtraction.  Don't forget
to clear the decimal mode after the operation is complete.  As with
the single-precision decimal arithmetic, you cannot perform
signed BCD arithmetic; only unsigned decimal arithmetic is
allowed.

MULTIPLE-PRECISION INCREMENTS.

     Sometimes it would be nice to be able to use the INC instruc-
tion to increment two 8-bit memory locations which are being
treated as a 16-bit value.  In conjunction with the indirect indexed
by Y addressing mode, this capability is highly useful.

     Unfortunately, the INC instruction does not affect the carry
flag, so we can't use the carry flag to detect an 8-bit overflow.  The
INC instruction will alter only the 'Z' and 'N' flags.  Fortunately, we
will be able to use the 'Z' flag as though it were a carry flag.  Why?
Because the increment instruction will cause an overflow only
when the prior result was $FF, and, when you increment $FF by
one, you wind up with $0.  Voila!  The zero flag will be set whenever
an overflow occurs while using the increment instruction.  Thus,
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the zero flag can be tested (using the BNE/BEQ instructions) to
determine whether or not the high-order byte(s) should be incre-
mented.

     EXAMPLE OF 16-BIT INCREMENT:

                  INC LOC
                  BNE LBL
                  INC LOC+$l
          LBL:

Likewise, a 3-byte increment could be synthesized as:

                  INC LOC
                  BNE LBL
                  INC LOC+$1
                  BNE LBL
                  INC LOC+$2
          LBL:

Higher precision increments can be handled in a similar manner.
Note that these increments are for unsigned quantities only.



Signed increments are possible, but it's simpler just to add one
to the memory locations using the ADC instruction.

MULTIPLE-PRECISION DECREMENTS.

     Just as useful as the multiple-precision increment is the
multiple-precision decrement.  The multiple-precision decrement
is handled in a manner similar to the multiple-precision increment
(what did you expect!).  There is one problem, however: overflow
occurs when the operand is decremented from $0 to $FF.  Since
the zero flag is not set on this transition, we must test the Z flag
before the decrement instruction is used.  Unfortunately, there is
no safe way to test a memory location to see if it contains zero
without explicitly loading that memory location into one of the
registers.  A 16-bit decrement must be handled as follows:

                  LDA OPRND ;set Z flag if OPRND is zero
                  BNE LBL
                  DEC OPRND+$1
          LBL     DEC OPRND
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A 3-byte decrement could be handled as:

                  LDA OPRND
                  BNE LBL1
                  LDA OPRND+$1
                  BNE LBL2
                  DEC OPRND+$2
          LBL2    DEC OPRND+$1
          LBL1    DEC OPRND

Beyond three bytes the SBC sequence becomes more econom-
ical than the DEC instruction sequence.  As with the INC instruc-
tion, this multiple-precision DEC sequence is for unsigned values
only.  Signed decrements are much easier to perform using the
SBC sequence.

MULTIPLE-PRECISION UNSIGNED
COMPARISONS.

     Once you know how to add and subtract multiple-precision
values the next step is to learn how to compare them.  Sadly, the
generalization from one byte to n bytes we have enjoyed for arith-
metic no longer applies to multiple-precision comparisons.  For
each type of comparison there is a completely different algorithm
which must be followed.  These, unfortunately, must be committed
to memory as all of them are special cases.  We'll start with the
easy ones first.

TESTING A 16-BIT VALUE FOR ZERO.

     To test an 8-bit variable against zero you simply load the
accumulator with the contents of the variable and then test the



zero flag.  When performing this same operation on a 16-bit value,
you must load the accumulator with the low-order byte, then OR
the accumulator with the high-order byte.  If any of the 16 bits are
set (which means the value is non-zero), the zero flag will be
reset.  If all of the sixteen bits are zero, the zero flag will be set
(hence the value is zero).

     EXAMPLE:

                  LDA TSTZER
                  ORA TSTZER+$1
                  BEQ ISZERO
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TESTING A 16-BIT VALUE TO SEE IF IT IS
NEGATIVE.

     To test a 16-bit value to see if it is negative is easy.  The sign
bit is bit 15 (the sixteenth bit) which is bit seven of the high-order
byte.  By loading the high-order byte into the accumulator, the 'N'
flag will be set to reflect the sign of the entire 16-bit number.  The
BIT instruction could also be used to test the high-order byte and
set the "N" flag accordingly.

TESTING FOR EQUALITY AND INEQUALITY

     The test for equality is not quite as simple.  This test must
be handled in two parts.  First, the low-order bytes are compared.
If they are not equal, then a branch should be taken to some
location further on in the code stream.  If they are equal, you
should drop down and compare the high-order bytes.  If the high-
order bytes are not equal a branch should be taken to the same
location as in the previous branch.  If the second test for inequality
fails you know that the two operands are equal.  The following
code will jump to EQUALS if the two operands specified are equal,
or it will jump to NOTEOL if the operands specified are not equal.

                  LDA OPRND1
                  CMP OPRND2
                  BNE NE
                  LDA OPRND1+$1
                  CMP OPRND2+$1
                  BNE NE
                  JMP EQUALS
          NE      JMP NOTEQL

     This sequence can be used to test for equality or inequality.
By removing the JMP NOTEQL instruction, this becomes a 16-
bit BEQ instruction, with the program dropping through to the next
location (at location NE) should the operand prove to be not equal.
The same test can be manufactured for NOT EQUALS by using
the following code:

                  LDA OPRND1



                  CMP OPRND2
                  BNE NE
                  LDA OPRND1+$1
                  CMP OPRND2+$1
                  BEQ EQL
          NE      JMP NOTEQL
          EQL:
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The extension to three or more bytes is simply a generalization
of this technique.

     EXAMPLE OF A THREE-BYTE TEST FOR NOT EQUALS:

                  LDA OPRND1
                  CMP OPRND2
                  BNE NE
                  LDA OPRND1+$1
                  CMP OPRND2+$1
                  BNE NE
                  LDA OPRND1+$2
                  CMP OPRND2+$2
                  BEQ EQL
          NE      JMP NOTEQL
          EQL:

     The inequalities (<, <=, >, & > =) turn out to be easier to
program than the test for equals/not equals.  If you will remember
the discussion of the CMP instruction, it was mentioned that this
instruction is really nothing more than a subtraction.  The only
difference is that the result is not kept around.  Since a straight
subtraction is performed (as opposed to a subtract with carry), a
mutiple-precision CMP instruction is not technically possible.  It
can be simulated, however, by the combined use of the CMP and
SBC instructions.  The CMP instruction is used to compare the
low-order bytes (this instruction is used so that the carry does not
have to be explicitly set), and then the SBC instructon is used to
compare successive bytes.  After the last bytes are compared
(using SBC) the BGE (or BCS) and BLT (or BCC) instructions
may be used to test the result.

     EXAMPLES:

                  X>=Y
                  ---- 
                  LDA X
                  CMP Y
                  LDA X+1
                  SBC Y+1
                  BGE GE

                  X<Y
                  ---- 



                  LDA X
                  CMP Y
                  LDA X+1
                  SBC Y+1
                  BLT LT
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     To test for greater than, or less than or equal to, we could
employ the methods described previously (in the chapter on sin-
gle-byte compares).  The only problem with this approach is the
fact that too much code is required to perform two 16-bit tests.  A
better method, which also works for 8-bit comparisons but
requires some knowledge of mathematics, is to alter the sequence
by which the operands are compared.  First, consider the test for
X>= Y.  It could be coded as:

                  X >= Y
                  ------ 
                  LDA X
                  CMP Y
                  LDA X+$1
                  SBC Y+$1
                  BGE THERE

When you say that X is greater than or equal to Y, you are also
stating that Y is less than or equal to X, so the above comparison
is also testing to see if Y is less than or equal to X.  To perform
the comparison X<=Y, use the code:

                  X <= Y
                  ------ 
                  LDA Y
                  CMP X
                  LDA Y+$1
                  SBC X+$1
                  BGE THERE

Which uses X as the value being compared to and the BGE
branch.  The test for greater than is exactly the same except you
use the BLT branch instead of the BGE branch.

     Comparisons of more than two bytes can be achieved by
tacking on more SBC instructions for each succeeding byte.

     Keep in mind that these comparisons are for unsigned
values only (both in binary and decimal mode).  For a description
of how to compare signed values read on....

SIGNED COMPARISONS.

     First, to test for equals, not equals, zero, or minus, you use
the same tests as you would for an unsigned value.  Testing for
the inequalities '<=','<', '>= not as straight forward.  Without a
lengthy discussion of the 6502 hardware and two's complement
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idiosyncrasies, you'll have to accept, on faith, that a comparison
is greater than or equal if the XOR of the overflow and sign flag
is one and the comparison is less than if the XOR of the overflow
and sign flag is zero.  One final note: the CMP instruction does
not affect the overflow flag, so a full subtract with carry must be
used.  The following sequences test for the annotated condition:

                  X >= Y
                  ------ 
                  SEC
                  LDA X
                  SBC Y
                  LDA X+$1
                  SBC Y+$1
                  BVS LBL1
                  BMI LT
          LBL2    JMP GTREQL
          LBL1    BPL LBL2
          LT:

                  X <= Y
                  ------ 
                  SEC
                  LDA Y
                  SBC X
                  LDA Y+$1
                  SBC X+$1
                  BVS LBL1
                  BMI GT
          LBL2    JMP LESEQL
          LBL1    BPL LBL2
          GT:

                  X < Y
                  ------ 
                  SEC
                  LDA X
                  SBC Y
                  LDA X+$1
                  SBC Y+$1
                  BVS LBL1
                  BPL GE
          LBL2    JMP LESS
          LBL1    BMI LBL2
          GE:
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                  X <= Y
                  ------ 
                  SEC
                  LDA Y
                  SBC X
                  LDA Y+$1
                  SBC X+$1
                  BVS LBL1
                  BPL
          LBL2    JMP LESEQL
          LBL1    BMI LBL2
          LT:

     Of course, there are many variations on the comparisons
and branches presented here.  These examples are definitely not
the most efficient or the only possible way of coding.  By experi-
menting and 'adjusting,' you can probably come up with the com-
bination you need.
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                           CHAPTER 11

                            BASIC I/O

GENERAL.

     The remaining chapters of this book will present program-
ming examples with brief explanations.  Should a particular piece
of code be unclear, the reader is urged to review previous chap-
ters in this book.

CHARACTER OUTPUT.

     In BASIC all output is handled by the PRINT statement.  In
the not-so-wonderful world of assembly language there is no
"PRINT" statement.  In fact, input/output (I/O) is not provided for
in the 6502 instruction set at all.  Since the 6502 does not provide
a scheme for I/O, the question naturally arises, "How does one
output data, anyway?"  To make a long story short, all I/O devices
are treated as though they were memory locations.  As such, input
and output is performed using load and store instructions.  The
Apple video screen, in fact, resides in memory (but more on that
later).

     Since the 6502 is capable of working with only one byte at
a time (i.e. one character), all I/O will have to be on a character-
by-character basis.  Typically, a user program will load the accu-
mulator with a character and jump to a subroutine that outputs
the character.  Strings are output by repeatedly loading the accu-
mulator and jumping to this subroutine.  Integers and floating point
numbers are output by converting each number to a string of
characters and outputting the converted string.



     The standard output device on the APPLE II computer is the
video screen.  The Apple video screen is an example of the so-
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called "memory-mapped video display."  A memory-mapped
video display uses one byte of memory for each character posi-
tion on the video screen.  By storing data into the video memory
you can put characters onto the Apple video screen.  Luckily, you
need not concern yourself with the actual addresses in memory
used by the Apple's video screen.  A subroutine within the Apple
monitor has been provided which allows you to output a character
(in the accumulator, of course) onto the video screen.  Where
does it output the character on the screen?  Right after the pre-
vious character that was output.  The subroutine is located at
$FDF0 in the Apple monitor ROM and may be used as follows:

                  LDA #"A"
                  JSR $FDF0
                  LDA #"B"
                  JSR $FDF0
                  LDA #"C"
                  JSR $FDF0
                  RTS
                  END

     This program outputs ABC (without the quotes) to the video
screen and then returns to the monitor (or other calling routine).
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Obviously, this form of output is very crude.  It would be insane to
expect anyone to output a string such as "I WON! CARE TO
PLAY AGAIN?" to the video screen using this method.

     A much better method of outputting chararacters requires
the use of the 6502 index registers.  To perform this type of I/O
function the string is stored somewhere in memory (where it will
not be executed as code) using LISA's 'STR' pseudo opcode.  The
index register is set equal to one (to skip over the length byte
emitted by the STR pseudo opcode) and then all characters are
output until the index register contains a value greater than the
length of the string.

                  LDX #$0
          LOOP    INX
                  LDA STRING,X
                  JSR $FDF0
                  CPX STRING
                  BLT LOOP
                  RTS
          ;



          STRING  STR "I WON! CARE TO PLAY AGAIN?"
                  END

     In this example the X-register is initialized to zero, then
incremented to one, before fetching the first character to output
(remember, the length byte has to be skipped over).  After the
character is output to the video display, the X-register is compared
with the length byte; if it is less than the length byte, another
character is output.

     The previous example has only one problem.  What happens
if the length of the string is zero?  At least one character is output
anyway.  Sometimes it's possible for a string to have a length of
zero, which means that the above procedure will not work in an
entirely pleasant manner.  In order to allow strings of length zero
to be output (or actually NOT output in this case), the following
code should be used:

                  LDX #$0
          LOOP    CPX STRING
                  BGE EXIT
                  LDA STRING+$1,X
                  JSR $FDF0
                  INX
                  JMP LOOP
          EXIT    RTS
          STRING  STR "I WON! CARE TO PLAY AGAIN?"
                  END
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     This routine attacks the problem in a slightly different man-
ner.  Rather than increment the X-register to compensate for the
length byte, an offset is added to the address of the STRING
when loading the A-register.  By using this offset method, the X-
index register will be equal to the length of the string MINUS one
when the last character of the string is loaded into the accumu-
lator.  Whenever the X-register becomes equal to the length byte,
the routine is finished.  The BGE instruction is used rather than
the BEQ instruction "just in case."  True, under almost all circum-
stances, the BEQ instruction would have worked fine, but an
ounce of prevention...

     Although this method is considerably better than outputting
the string a character at a time, it still leaves a lot to be desired.
What happens if you wish to output several lines?  In BASIC you
would simply use additional print statements.  In assembly lan-
guage you have to repeat the above sequence over and over
again.  Not a nice thought.

     To avoid this, a second method of outputting characters must
be used.  Rather than using a length byte to inform the print routine
about the length of the string, a trailing end-of-text byte is used
to terminate the string.  Now, the print routine simply prints all
characters until this end-of-text character is encountered, which



means control characters such as RETURN and LINE FEED may
be imbedded directly in the string.

     The ASCII character set does include a special 'ETX' (for
'end-of-text') character ($83, or control-C), but sometimes you
may need to output this character to some device.  As a result, it
is better to select a character code that will almost never be output
to a peripheral device.  Such a character is the inverted at sign
('@') which has a character code (on the APPLE II compter) of
$00.  The choice of the character code is arbitrary, but it is very
easy to test for zero, so that's what will be used in the following
examples:

                  LDX #$0         ;INIT POINTER TO CHARACTERS
          LOOP    LDA STRING,X    ;GET NEXT CHARACTER
                  BEQ EXIT        ;IF ZERO, QUIT
                  JSR $FDF0       ;OTHERWISE OUTPUT
                  INX
                  JMP LOOP
          EXIT    RTS
          STRING  ASC "I WON!  CARE TO PLAY AGAIN?"
                  BYT $0
                  END
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     Note that the ASC pseudo opcode was used rather than the
STR pseudo opcode.  Remember, the STR pseudo opcode out-
puts a length byte before it outputs the string.  This feature is not
desirable here.

     Outputting several lines at once is simply a matter of imbed-
ding carriage returns within the text:

                  LDX #$0
          LOOP    LDA STRING,X
                  BEQ EXIT
                  JSR $FDF0
                  INX
                  JMP LOOP
          ;
          EXIT    RTS
          STRING  ASC "I WON!  CARE TO PLAY AGAIN?"
                  BYT $8D
                  ASC "(Y/N):"
                  BYT $0
                  END

     The previous example outputs two separate lines before
termination.  Any number of lines (almost!) may be output by
embedding a return character ($8D) within the text string.

     The procedures thus far presenting this point suffer from
one drawback.  Since the X-register is used to access elements
of the strings being output, you are limited to a maximum of 255



characters in your strings.  Although this may seem like a lot for
just one string, remember that when outputting several lines the
255 character limitation (i.e. six lines) becomes critical.  In fact,
the last example had a small "bug" in it.  Should you try to output
more than 255 characters, the X-register will wrap around to zero
and then the routine will begin printing the string from the begin-
ning again.  The end result is that you will wind up in a infinite loop
with a lot of redundant material ending up on the screen.  To pre-
vent the infinite loop from occurring, you should use the following
code:

                  LDX #$0
          LOOP    LDA STRING,X
                  BEQ EXIT
                  JSR $FDF0
                  INX
                  BNE LOOP
          ;
          EXIT    RTS
          STRING  ASC "> 255 CHARACTERS HERE"
                  BYT $0
                  END
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     In this example the JMP LOOP instruction was replaced with
the BNE LOOP instruction.  Should the X-register overflow and
wrap around to zero, the routine will exit rather than continuing
on its merry way.  It should be noted that this "fix" does not allow
you to output more than 255 characters, it simply terminates out-
put once 255 characters have been output.  As a result, part of
your string may not be displayed, but then your program will not
cause an infinite amount of 'garbage' to be written to the screen
either.

     To output strings whose length is greater than 255, a 16-bit
pointer must be used.  This means that the indirect, indexed by
Y addressing mode must be used.  The following routine allows
you to output strings of any length (less than 65,535 characters,
of course):

                  LDA #STRING     ;MOVE ADDRESS OF STRING
                  STA $0          ;INTO LOCATIONS $0 AND
                  LDA /STRING     ;$1
                  STA $1
                  LDY # 0         ;INIT Y REGISTER
          LOOP    LDA ($0),Y
                  BEQ EXIT
                  JSR $FDF0
                  INY
                  BNE LOOP        ;IF NO OVERFLOW, KEEP IT UP
                  INC $1          ;INCREMENT BEYOND B BITS
                  BNE LOOP
          EXIT    RTS
          STRING  ASC "STRING OF ANY LENGTH"



                  HEX 00
                  END

     This routine has a couple of interesting features.  First, note
that the Y-register, rather than location $0 was incremented.  This
saves a byte of code and lets the routine run a little faster.  Also
note that locations $0 and $1 had to be set up before the routine
was executed.  Although considerably more code was required to
write this outine, in the end it pays off because the routine can be
turned into a generalized subroutine.  Consider:

          PRTSTR  STA $0
                  STY $1
                  LDY #$0
          LOOP    LDA ($0),Y
                  BEQ EXIT
                  JSR $FDF0
                  INY
                  BNE LOOP
                  INC $1
                  BNE LOOP
          ;
          EXIT    RTS
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     With this subroutine all you need to do is load the accu-
mulator and Y-register with the address of the string to be output
(low-order byte into ACC, high-order byte into Y-register) and then
JSR PRTSTR.

     Example:

                  LDA #STRING
                  LDY /STRING
                  JSR PRTSTR
                  RTS
          STRING  ASC "STRING OF ANY LENGTH"
                  BYT $0
                  END

     Now only three lines of code (plus the string) are required
to output a string of characters.  That's quite a bit better than the
seven to ten lines required by the other methods.  Nevertheless,
this method has two drawbacks.  First, three lines are still two
lines more than one.  Second, this method requires that data be
passed to the subroutine in the accumulator and Y-register.  Typ-
ically, one likes to avoid the use of the registers for parameter
passing as much as possible (since the registers are much more
useful for indexing and counter purposes).

     The final method presented here is based on the previous
example.  That is, the address of a string is passed to a subroutine
which outputs all data from that address forward until a zero is
encountered.  The approach used by this method is different



because the 6502 stack will be used to pass the address to the
routine.  Consider the following assembly language sequence:

                  JSR PRINT
                  ASC "HELLO THERE"
                  HEX 00
                  RTS
                  END

     This section of code would jump to the 'PRINT' subroutine
and then return to the next instruction- which is the character 'H.'
Wait a minute, this won't work as planned!  The string has to be
placed where it won't be executed as code.  Or does it?  As you
may recall, when a subroutine is called, the return address minus
one is pushed onto the stack.  If the address is popped off the
stack and incremented by one, the address will point to the "H" in
"HELLO."  By using this pointer, it is possible to output all the data
until a $00 is encountered.  When the zero is encountered, the
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next byte will (hopefully) contain a valid instruction so the address
can be pushed back on the stack and a normal RTS instruction
can be executed.  Upon return, the 6502 will continue program
execution at the point just beyond the $00.  Another alternative is
to increment the address by one (upon encountering $0) and then
jump indirect through that address.  This simulates the RTS
instruction with a small space savings.  The final PRINT subrou-
tine might be:

          PRINT   STA ASAVE       ;SAVE ACC
                  STY YSAVE       ;SAVE Y REG
                  PLA
                  STA ZPAGE
                  PLA
                  STA ZPAGE+$1
                  JSR INCZ
                  LDY #$0
          PLOOP   LDA (ZPAGE),Y
                  BEQ EXIT
                  JSR $FDF0
                  JSR INCZ
                  JMP PLOOP
          ;
          EXIT    JSR INCZ
                  LDA ASAVE
                  LDY YSAVE
                  JMP (ZPAGE)
          ;
          INCZ    INC ZPAGE
                  BNE INCZ0
                  INC ZPAGE+$1
          INCZ0   RTS
                  END



     This routine is called with the string immediately following
the JSR instruction, terminated of course by a hex 00.

     EXAMPLES:

                  JSR PRINT
                  ASC "I WON!  CARE TO PLAY AGAIN?"
                  BYT $8D
                  ASC "(Y/N):"
                  BYT $0
                   .
                   .
                   .
                  JSR PRINT
                  ASC "HELLO THERE, HOW ARE YOU!"
                  BYT $0
                  JSR PRINT
                  BYT $8D
                  ASC "I AM A SMART COMPUTER!"
                  BYT $0
                   .
                   .
                  ETC....
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STANDARD OUTPUT AND PERIPHERAL
DEVICES.

     Until now all output was assumed to be directed to the
Apple's video display.  To output a character to the video display
you simply load a character into the accumulator and JSR to
$FDF0.  Since it is not a good idea to use absolute addresses
within your assembly language programs, you should define a
symbolic label (using the EQU pseudo opcode) that is equal to
$FDF0.  A good label to use is COUT1, because that's the label
used in the Apple monitor listings, and if someone else reads
your code, they will probably associate the video output routine
with the COUT1 label.

     Sometime you will want to output data to some peripheral
device other than the video display.  Output is handled in a manner
identical (in most cases) to the video display.  That is, you load
the accumulator with the character you wish to output and JSR
to the routine that handles the output for you.  The address of this
routine is typically $Cn00 where n is the slot number of the periph-
eral deviceland is in the range of 0 thru 7.  Note that this scheme
only works for the so-called, "intelligent" peripherals which have
an on-board ROM.  "Dumb" peripherals, such as those purchased
from Electronic Systems and Microproducts, use a totally different
scheme for "driver software" storage.  You should also be aware
that this scheme does not work for the Disk II or the Tape II
devices as they use the ROM area for a bootstrap loader.  Let's
assume you have a printer interface in slot #1.  All you have to do
to output a character to the printer is load the accumulator with



that character and JSR $C100.

     But it is even easier to use Apple's "Standard Output."
Rather than jumping to the subroutine at $Cn00, simply JSR to
location $FDED (label = COUT) in the Apple monitor.  This
causes the output to be directed to the currently active peripheral.
Peripherals are made active by simulating the PR#n and IN#n
commands from assembly language.  To simulate a PR#n com-
mand, first load the accumulator with the slot number, and then
JSR to location $FE95 in the Apple monitor (routine 'OUTPORT').
To simulate an IN#n command, load the accumulator with the
slot number and JSR to location $FE8B (routine 'INPORT').  To
reset the I/O vectors to the video screen or keyboard (the equiv-
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alent of a PR#0 or IN#0 command), just load the accumulator
with zero before jumping to the desired routines.  Alternately, you
may simulate a PR#0 command by JSR'ing to $FE93 you may
simulate an IN#0 command by JSR'ing to $FE89.

     When you execute the routine at location $FDED, the first
instruction to be executed is a JMP ($36).  Normally, locations
$36 and $37 contain $F0 and $FD, which means that whenever
you JSR $FDED (or JSR COUT), the COUT1 routine gets exe-
cuted.  If a PR#n command (or equivalent) is executed prior to
the output of a character, $00 will be stuffed into location $36 and
$Cn will be stuffed into location $37.  Now the character is routed
to the routine stored at location $Cn00... automatically.  Naturally
you can 'poke' the address into locations $36 and yourself:

          -SIMULATION OF A PR#3
                  LDA #$00
                  STA $36
                  LDA #$C3
                  STA $37

                              11-10

*****************************************************************

          -SIMULATION OF A PR#0
                  LDA #$FDF0
                  STA $36
                  LDA /$FDF0
                  STA $37

          -CAUSE OUTPUT TO BE ROUTED TO USER ROUTINE
           AT LOCATION $300
                  LDA #$300
                  STA $36
                  LDA /$300
                  STA $37



     The last example is important because it demonstrates how
one activates a user-defined output routine.  An example of such
a user routine is:

                  ORG $300
                  LDA #DBLVSN
                  STA $36
                  LDA /DBLVSN
                  STA $37
                  RTS
          ;
          DBLVSN  JSR $FDF0
                  JMP $FDF0
                  END

     Assemble this routine, then execute the Apple monitor 300G
command and watch what happens.  The fact that the standard
output can be "directed" is one of the more powerful features of
the Apple monitor, and is the primary reason that the Apple II is
easily expandable.

CHARACTER INPUT.

     Just as with character output, character input is handled a
character at a time.  The Apple II keyboard appears as two mem-
ory locations to the user program.  Location $C000 in memory will
contain the ASCII code of the last key pressed.  If bit seven is set
(i.e., the high-order bit is one), a valid key has been pressed.  If
bit seven is clear, then a key has not yet been pressed and the
data at location $C000 is invalid.  Accessing location $C010 clears
bit seven to allow additional keys to be pressed and acknowl-
edged.
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     Therefore, to read a key from the Apple keyboard you would
perform the following steps:

     1) Read location $C000 and loop until bit seven is set.

     2) Load the accumulator from location $C000 to enter the
        keycode into the accumulator.

     3) Store the accumulator into location $C010 to clear the
        keyboard strobe, which makes location $C000 ready for
        the next input.

     A suitable program for accomplishing this task might be:

          KEYIN   LDA $0000
                  BPL KEYIN
                  STA $C010
                  RTS

     You will notice that any key read in this manner will not be



'echoed' onto the Apple screen.  To perform this function (that of
an 'electronic typewriter'), use the following code:

          TPWRTR  JSR KEYIN
                  JSR COUT
                  JMP TPWRTR
          KEYIN   LDA $C000
                  BPL KEYIN
                  STA $C010
                  RTS
          COUT    EQU $FDF0
                  END
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To exit this program, depress the RESET key on the Apple II
keyboard.

     When using the Apple keyboard and the video display, the
Apple monitor provides a very handy character input subroutine.
It is located at $FD0C and it sets the current cursor location to
the flashing mode.  Upon keyboard entry the flashing cursor is
replaced with the data originally under the cursor.  A better 'elec-
tronic typewriter' might be:

          LOOP    JSR RDKEY
                  JSR COUT
                  JMP LOOP
          RDKEY   EQU $FD0C
          COUT    EQU $FDED
                  END

The routine at location $FD0C does not 'echo' the character back
to the display, hence the JSR COUT.

     Just as the routine at location $FDED handles I/O param-
eters through the standard output (allowing you to output data to
several different peripherals), the routine at location $FD0C gets
its input from the 'standard input.' By JSR'ing through location
$FD0C it is possible to read data from peripherals such as the
Disk II, Mountain Computer's Apple Clock, external terminals, etc.

     There are two differences between the way standard output
is handled and the way the standard input is handled.  First, loca-
tions $38 and $39 are used to hold the address of the routine
from which the input is coming.  Second, the input data is returned
in the accumulator.

     An IN# command can be simulated by loading the accu-
mulator with the desired slot number and JSR'ing to the routine
at location $FE8B.  An IN#0 command can be simulated by
JSR'ing to the routine at location $FE89.  Input must be handled
a little more cautiously than output; the reader is advised to study
the input routines in the Apple monitor ROM's from location
$FD0C to $FD2E.



INPUTTING A LINE OF CHARACTERS.

     Obviously, to input a line of characters- all one needs to do
is continually read a single character and store the data in suc-
cessive memory locations until a carriage return (ASCII CODE
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= $8D) is received.  Although, on the surface the routine seems
trival to write, there are several little "gotcha's" which sneak up
on you.  For instance, when you press the backspace key, the
ASCII code $88 is returned.  If you print a backspace, the cursor
will indeed back up; however, typically you do not want to enter
the backspace character into the line of text, but rather you wish
to delete the previously entered character.  Also, the right arrow
key (which is the same as control-U) will not copy the data under
the cursor, but rather return the ASCII code $95.  Furthermore,
the ESC editing functions are not supported, unless of course,
you write the handler routines yourself.  As you can see, the trival
routine turns out to be not-quite-so-trival!

     Luckily, a line input routine has already been written for us.
The address of this routine is $FD67 and it is called, "GETLNZ."
When called, it outputs a carriage return, prints a 'prompt' char-
acter (more on that later), and then reads a line of text from the
current input device.  Whatever character resides in location $33
is used as a prompt character, so, if you wish to use a new and
unique prompt (perhaps ":" or "-" or "="), simply store the char-
acter at location $33 before calling GETLNZ.

     GETLNZ has two alternate entry points.  GETLN (at location
$FD6A) does not output a carriage return before outputting the
prompt character.  GETLN1 (at location $FD6F) outputs neither
the prompt character nor the carriage return.  Both of these entry
points will be useful on occasion.

     So where does the text end up when you call GETLNZ,
GETLN, or GETLN1?  All text is stored sequentially in memory
beginning at location $200.  A maximum of 256 characters are
allowed to be entered without having the line rejected.  Because
of this, page two should never be used for program code or data.
Upon return from the GETLNZ, GETLN, or GETLN1 routine the
X-register contains the number of characters actually input (not
including the carriage return).  The GETLN routines echo all input
so the user can see what's going on.  Furthermore, all Apple
screen editing features are supported.  Just exactly how one
would use the line input routines will be discussed in following
chapters.
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                           CHAPTER 12

                           NUMERIC I/O

GENERAL.

     Inputting and outputting characters is fine for many pur-
poses.  However, sometimes the need arises to input or output
numeric data.  This chapter will cover four types of numeric I/O:

     1) Hexadecimal I/O

     2) Byte/numeric I/O

     3) Integer (16-bit or more) I/O

     4) Signed integer (16-bit two's complement) I/O

HEXADECIMAL OUTPUT.

     The easiest type of data to output numerically is a hexade-
cimal number.  Although we could write a routine to do this (and
in fact one is presented for your education), there is no need.  The
Apple monitor provides us with a very good routine.  The address
of the routine is $FDDA and this routine prints the contents of the
accumulator as two hex digits.  The contents of the accumulator
are destroyed, but no other registers are affected.  The Apple
monitor name for this routine is PRBYTE, but HEXOUT is usually
used in user programs.  It should be noted that the hexadecimal
output and BCD output routines are one and the same, so if you
wish to output a BCD number, use the routine at location $FDDA.

     To output a number (BCD or HEX) that is greater than one
byte, load the accumulator with the most-significant byte and JSR
HEXOUT.  Repeat this for all the other bytes (the next most-sig-
nificant byte down to the least-significant byte) until the entire
number is output.
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     The PRBYTE routine in the monitor is reproduced here (with
some minor changes) for illustrative purposes:

          PRBYTE  PHA             ;SAVE ACC FOR USE LATER ON
                  LSR             ;SHIFT H.O. NIBBLE
                  LSR             ;DOWN TO THE L.O. NIBBLE
                  LSR             ;CLEARING THE H.O. NIBBLE
                  LSR
                  JSR PRHEXZ      ;PRINT L.O. NIBBLE AS A DIGIT
                  PLA             ;GET ORIGINAL VALUE BACK
          PRHEX   AND #$F         ;MASK H.O. NIBBLE
          PRHEXZ  ORA #$B0        ;CONVERT TO ASCII
                  CMP #$BA        ;IF IT IS A DIGIT FINE, OTHER- 
                  BLT PRTIT       ;WISE IT MUST BE CONVERTED TO A
                  ADC #$6         ;LETTER IN THE RANGE A-F



          PRTIT   JMP COUT
          COUT    EQU $FDED
                  END

The CMP #$BA is required because the letter A does not imme-
diately follow the digit 9 in the ASCII character set.  Since BLT is
the same as BCC, the processor is guaranteed to have the carry
flag set if the ADC #$6 is encountered.  In effect, we are adding
seven to the contents of the accumulator.  $BA plus $7 is $C1
which is the ASCII code for the letter A, exactly what we want.
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OUTPUTTING BYTE DATA AS A DECIMAL
VALUE.

     Hex numbers are fine for computer type people, but when
trying to present information to others, the decimal number sys-
tem should be used.  The monitor does not contain a facility for
outputting decimal numbers (except BCD) so we will have to write
one ourselves.  In this section, a method for outputting a single
byte as an unsigned integer in the range 0 to 255 will be explored.

     The algorithm for outputting a byte as a decimal integer is
actually quite simple.  The binary number is compared with 100;
if greater or equal, then 100 is continually subtracted until the
desired value is less than zero.  After each subtraction, a memory
location is incremented so that when the number is less than one
hundred, the hundreds digit is saved in this memory location.  This
data may then be output to the video screen.  This process is
repeated, only 10 is subtracted this time instead of 100.  Once the
number is less than 10, the corresponding digit counter is output.
Since the remaining number is less than 10, its output is accom-
plished rather easily.

     In addition to these steps, a flag must be used to suppress
the output of leading zeros.  This is accomplished by initializing
a memory location to a positive value, which is set negative (i.e.,
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high-order bit = 1  Before outputting a digit, this flag is checked to
make sure that a zero (should the digit be a zero) can be output.
The program is written as follows:

          PRTBYT  PHA             ;SAVE REGISTERS
                  TXA
                  PHA
          ;
                  LDX #$2         ;MAX OF 3 DIGITS (0-255)
                  STX LEAD0       ;INIT LEAD0 TO NON-NEG VALUE
          PRTB1   LDA #"0"        ;INITIALIZE DIGIT COUNTER



                  STA DIGIT
          ;
          PRTB2   SEC
                  LDA VALUE       ;GET VALUE TO BE OUTPUT
                  SBC TBL10,X     ;COMPARE WITH POWERS OF 10
                  BLT PRTB3       ;IF LESS THAN, OUTPUT DIGIT
          ;
                  STA VALUE       ;DECREMENT VALUE
                  INC DIGIT       ;INCREMENT DIGIT COUOTER
                  JMP PRTB2       ;AND TRY AGAIN
          ;
          PRTB3   LDA DIGIT       ;GET CHARACTER TO OUTPUT
                  CPX #$0         ;CHECK TO SEE IF THE LAST DIGIT
                  BEQ PRTB5       ;IS BEING OUTPUT
                  CMP #"0"        ;TEST FOR LEADING ZEROS
                  BEQ PRTB4
                  STA LEAD0       ;FORCE LEAD0 NEG IF NON-ZERO
          ;
          PRTB4   BIT LEAD0       ;IF ALL LEADING ZEROS, DON'T
                  BPL PRTB6       ;OUTPUT THIS ONE
          PRTB5   JSR COUT        ;OUTPUT DIGIT
          PRTB6   DEX             ;MOVE TO NEXT DIGIT
                  BPL PRTB1       ;QUIT IF THREE DIGITS HAVE
                  PLA             ;BEEN HANDLED
                  TAX
                  PLA
                  RTS
          TBL10   BYT !1
                  BYT !10
                  BYT !100
          ;
          COUT    EQU $FDED
          LEAD0   EPZ $0
          DIGIT   EPZ LEAD0+$1
          VALUE   EPZ DIGIT+$1
                  END

     To use this routine, load into the location VALUE the byte to
be printed; then JSR PRTBYT.  The decimal number correspond-
ing to the byte stored in location VALUE will be output to the
screen (or other output device).
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OUTPUTTING 16-BIT UNSIGNED INTEGERS.

     Obviously we have to work with quantities which cannot be
contained in only eight bits.  With two bytes, unsigned values in
the 0-65,535 range can be represented.  Output of integers in
this range is accomplished quite easily by extending the previous
routine to test for values in the 1000 to 10,000 range.  The final
routine appears similar to the following list:

          PRTINT  PHA             ;SAVE REGISTERS
                  TXA



                  PHA
                  LDX #$4         ;OUTPUT UP TO 5 DIGITS
                  STX LEAD0       ;INIT LEAD0 TO NON-NEG
          ;
          PRTI1   LDA #"0"        ;INIT DIGIT COUNTER
                  STA DIGIT
          ;
          PRTI2   SEC             ;BEGIN SUBTRACTION PROCESS
                  LDA VALUE
                  SBC T10L,X      ;SUBTRACT LOW ORDER BYTE
                  PHA             ;AND SAVE
                  LDA VALUE+$1    ;GET H.O BYTE
                  SBC T10H,X      ;AND SUBTRACT H.O TBL OF 10
                  BLT PRTI3       ;IF LESS THAN, BRANCH
          ;
                  STA VALUE+$1    ;IF NOT LESS THAN, SAVE IN
                  PLA             ;VALUE
                  STA VALUE
                  INC DIGIT       ;INCREMENT DIGIT COUNTER
                  JMP PRTI2
          ;
          ;
          PRTI3   PLA             ;FIX THE STACK
                  LDA DIGIT       ;GET CHARACTER TO OUUPUT
                  CPX #$0         ;LAST DIGIT TO OUTPUT?
                  BEQ PRTI5       ;IF SO, OUTPUT REGARDLESS
                  CMP #"0"        ;A ZERO?
                  BEQ PRTI4       ;IF SO, SEE IF A LEADING ZERO
                  STA LEAD0       ;FORCE LEAD0 TO NEG.
          ;
          PRTI4   BIT LEAD0       ;SEE IF NON-ZERO VALUES OUTPUT
                  BPL PRTI6       ;YET.
          PRTI5   JSR COUT
          PRTI6   DEX             ;THROUGH YET?
                  BPL PRTI1
                  PLA
                  TAX
                  PLA
                  RTS
          ;
          T10L    BYT !1
                  BYT !10
                  BYT !100
                  BYT !1000
                  BYT !10000
          ;
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          T10H    HBY !1
                  HBY !10
                  HBY !100
                  HBY !1000
                  HBY !10000
          ;



          COUT    EQU $FDED
          LEAD0   EPZ $0
          DIGIT   EPZ LEAD0+S1
          VALUE   EPZ DIGIT+$1
                  END

     To use this routine, load VALUE and VALUE+$1 with the
binary integer you wish output.  Then JSR PRTINT and let the
routine do the rest of the work for you.  This routine is fairly general
and can be expanded to output numbers greater than two bytes
in length.  All that is required is one additional subtraction between
the PRTI2 and PRTI3 labels to handle the most-significant byte,
and the inclusion of another table of bytes giving the most-sig-
nificant byte values for the data you wish output.  Finally, the LDX
#$4 instruction has to be changed to reflect the maximum number
of digits to be output, MINUS ONE.  Beyond that, this routine can
be used to output unsigned integers of any size.

OUTPUTTING SIGNED 16-BIT INTEGERS.

     Outputting a two's complement signed value turns out to be
quite simple.  Check the high-order bit of the number.  If it is clear,
jump to the PRTINT routine just described.  If the high-order bit is
set then you must output a "-", take the two's complement of the
number; then jump to the PRTINT routine.  The code is written as
follows:

          PRTSGN  BIT VALUE+$1    ;TEST SIGN BIT
                  BPL PRTINT      ;IF POSITIVE, GO TO PRTINT
                  PHA             ;SAVE ACC
                  LDA #"-"        ;OUTPUT A
                  JSR COUT
                  SEC             ;TAKE TWO'S COMPLIMENT OF
                  LDA #$0         ;VALUE.
                  SBC VALUE
                  STA VALUE
                  LDA #$0
                  SBC VALUE+$1
                  STA VALUE+$1
                  PLA
          PRTINT  ---             ;INSERT PRTINT ROUTINE HERE
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AN EASY METHOD OF OUTPUTTING INTEGERS.

     Although these decimal printing routines are fairly easy to
use, they do require a substantial amount of setup code.  VALUE
and VALUE+$1 must be loaded with the integer to be output
before the JSR is executed.  This setup code requires 8 to 10
bytes and four lines of code.  The following routine (that works in
a manner similar to the print routine developed in the last chapter)
allows you to specify the address of the integer which you wish
output immediately after the JSR statement.  This only requires
one extra line and two bytes of code, which makes it almost as



easy to use as the PRINT I command.  The routine works in the
following manner:

     1) The return address is popped off the stack and stored in
        VALUE.

     2) VALUE is incremented by two and pushed back onto the
        stack.  This fixes the return address so that the 6502 will
        return to the point immediately following the 2-byte
        address.

     3) VALUE is decremented by one.  It now points to the 2-byte
        address that follows the JSR instruction.

     4) The two bytes pointed to by (VALUE) and (VALUE)+$1
        (which is the address of the integer we wish to print) are
        loaded into VALUE.

     5) The data bits pointed to by VALUE (i.e., the data to be
        output) are then loaded into VALUE.

     6) PRTINT or PRTSGN is called to output the number.  The
        code used to achieve all of this is:

                  STA ASAVE       ;SAVE ACC
                  STY YSAVE       ;SAVE Y REGISTER
                  PLA             ;GET RETURN ADDRESS
                  STA VALUE
                  PLA
                  STA VALUE+$1
                  JSR INCV        ;INCREMENT VALUE BY TWO
                  JSR INCV
                  LDA VALUE+$1    ;PUSH RETURN ADDRESS
                  PHA
                  LDA VALUE
                  PHA
                  JSR DECV        ;MAKE VALUE POINT TO DATA
                  JSR LVIV        ;GET DATA POINTED AT BY
                                  ;DATA FOLLOWING JSR
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                  LDA ASAVE       ;RESTORE ACC
                  LDY YSAVE       ;RESTORE Y REGISTER
                  JMP PRTINT      ;CHANGE TO PRTSGN IF SIGNED
          ;                       ;OUTPUT IS DESIRED
          LVIV:
                  JSR LAIA
                  JSR LAIA
          LAIA    LDY #$0
                  LDA (VALUE),Y   ;GET L.O. BYTE
                  PHA
                  INY
                  LDA (VALUE),Y   ;GET H.O. BYTE
                  STA VALUE+$1    ;AND REPLACE VALUE



                  PLA
                  STA VALUE
                  RTS
          ASAVE   EPZ $4          ;ACC SAVE AREA
          YSAVE   EPZ ASAVE+$1    ;Y REG!SAVE AREA
                  END

NUMERIC INPUT.

HEXADECIMAL and BCD.

     Numeric input is just as important as numeric output.  In this
section we will explore the various methods of inputting numeric
data.

     BCD input is by far the easiest to accomplish.  The only
operations required here are some masking and shifting opera-
tions.  BCD input uses the following algorithm:

     1) Initialize some location (VALUE) to zero.  In these exam-
        ples a 2-byte input will be used, but the generalization to
        more (or fewer) bytes should be apparent.

     2) All input will be assumed to be stored in page two (so that
        it is compatible with the GETLN routines) and the Y-reg-
        ister will point to the first character to be input.

     3) The end of the BCD string will be considered to be the
        first non-decimal digit encountered.

     4) Each digit is read in and the high-order nibble (which
        always $B) is shifted out with four successive ASL instruc-
        tions.  The low-order nibble of the original number is left
        in the high-order nibble of the accumulator.

     5) This value is shifted into VALUE using the ROL instruc-
        tion.  First, some routines which will prove to be useful:
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          ; TSTDEC: TEST THE CHARACTER IN THE ACCUMULATOR.
          ; IF A VALID DECIMAL DIGIT, THEN THIS ROUTINE RETURNS
          ; WITH THE CARRY FLAG SET.  IF THE CHARACTER IN THE
          ; ACCUMULATOR IS NOT A DECIMAL DIGIT, THEN THIS ROUTINE
          ; RETURNS WITH THE CARRY FLAG CLEAR.

          TSTDEC  CMP #"0"        ;BRACKET TEST FOR A DIGIT
                  BLT NOTDEC
          CMP #"9"+$1             ;IS IT GREATER THAN NINE?
                  BGE NOTDEC
                  SEC             ;IT IS A DECIMAL DIGIT
                  RTS             ;SO SET THE CARRY AND RETURN
          ;
          ;
          NOTDEC  CLC             ;NON-DIGIT WAS FOUND



                  RTS

          ; SHFTIN: SHIFTS THE L.O. NIBBLE OF THE ACCUMULATOR
          ; INTO "VALUE".

          SHFTIN  ASL             ;MOVE LOW ORDER NIBBLE
                  ASL             ;INTO HIGH ORDER NIBBLE
                  ASL             ;OF THE ACCUMULATOR
                  ASL
          ;
                  JSR SHFT2
          SHFT2   JSR SHFT1
          SHFT1   ASL             ;SHIFT ACC INTO VALUE
                  ROL VALUE       ;NOTE: FOUR SHIFTS ARE
                  ROL VALUE+$1    ;PERFORMED HERE!
                  RTS
          ;

     The code for SHETIN should be studied carefully.  You should
manually trace the code beginning at the JSR SHFT2 instruction
and convince yourself that four shifts are performed by this code
sequence.  With these two routines, BOD input becomes very
easy.  The BCD input routine is coded as follows:

          ;BCDIN: CONVERTS ASCII STRING IN PAGE TWO (POINTED
          ;AT BY THE Y REGISTER) INTO A BCD VALUE. ALL DIGITS
          ;ARE CONVERTED UNTIL A NON-DIGIT IS ENCOUNTERED.
          ;
          BCDIN:
                  LDA #$0         ;INITIALIZE VALUE TO ZERO
                  STA VALUE
                  STA VALUE+$1
          ;
          BCDLP   LDA PAG2,Y      ;GET NEXT CHARACTER
                  JSR TSTDEC      ;IS IT A DECIMAL DIGIT?
                  BCC BCDONE      ;IF NOT, QUIT
                  JSR SHFTIN      ;IF IT IS, SHIFT INTO VALUE
                  INY             ;INDEX TO NEXT CHARACTER
                  BNE BCDLP       ;AND REPEAT
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          ;
          BCDONE  RTS

          PAG2    EQU $200        ;GETLN INPUT BUFFER
          VALUE   EPZ $2
                  END

The following short program demonstrates the use of the BCD
input routine from within a program.

          BCDTST  JSR PRINT       ;PRINT ROUTINE (SEE LAST CH)
                  ASC "ENTER A NUMBER:"
                  HEX 00



          ;
                  JSR GETLN1      ;GET A LINE OF TEXT (NO PROMPT)
                  LDY #0
                  JSR BCDIN
                  JSR PRINT
                  ASC "YOU ENTERED:"
                  HEX 00
          ;
                  LDA LDA VALUE+$1
                  JSR HEXOUT
                  LDA VALUE
                  JSR HEXOUT
                  RTS
          ;
          GETLN1  EQU $FD6F
          HEXOUT  EQU $FDDA
                  END

     Inputting a hexadecimal number is handled in an identical
manner, except "TSTDEC" is replaced by "TSTHEX" which tests
the character in the accumulator to see if it is a valid hexadecimal
digit.  In addition to testing for a valid hex digit, TSTHEX also
converts the letters "A" to "F" to the hex values $BA-$BF so that
the 16 hexadecimal values are contiguous.

                  CMP #"0"        ;BRACKET TEST FOR DECIMAL D
                  BLT NOTHEX
                  CMP #9"+$1
                  BLT ISHEX
                  CMP #"A"        ;BRACKET TEST FOR "A" t
                  BLT NOTHEX
                  CMP #"G"
                  BGE NOTHEX      ;SAME AS BCS (SEE NEXT INSTR)
                  SBC #$6         ;CONVERT FROM $C1 TO $BA ...
          ISHEX   SEC             ;SIGNAL VALID HEX DIGIT
                  RTS
          ;
          NOTHEX  CLC             ;SIGNAL INVALID HEX DIGIT
                  RTS
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     To input a hexadecimal number, use this routine in place of
TSTDEC and replace the JSR TSTDEC with JSR TSTHEX in
BCDIN.  Obviously, the name should be changed to HEXIN so
that it makes a little more sense.

UNSIGNED DECIMAL INPUT.

     Decimal input of numeric data (with conversion to binary) is
only slightly more difficult than BCD or hexadecimal input.  The
algorithm to accomplish decimal input is roughly as follows:

     1) Input a character and test for validity (i.e., is it in the range
        0-9?).



     2) Strip the high-order four bits to give the numeric repre-
        sentation of the digit.

     3) Multiply a 16-bit memory location by ten and add the
        stripped digit to this 16-bit location.

     4) When all the digits have been shifted in, the 16-bit val-
        contained in the two memory locations is the binary con-
        tained in the two memory locations is the binary repre-
        sentation of the decimal value.
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     Parts one and two are accomplished in the same manner
as for BCD numbers.  As such, they will not be discussed further
here.  The third part of this algorithm (multiplying a 16-bit value
by ten) is easily accomplished using the multiply routines in the
next chapter.  However, a more specialized multiplication routine
(a simple mulitplication by ten) is much faster and requires less
code.  A routine which multiplies the 16-bit value held in locations
VALUE and VALUE+$1 by ten is:

          MUL100
                  PHP
                  PHA
                  ASL VALUE       ;MULTIPLY VALUE BY 2
                  ROL VALUE+$1
                  LDA VALUE+$1    ;SAVE A COPY OF VALUE
                  PHA             ;MULTIPLIED BY 2
                  LDA VALUE
                  ASL VALUE       ;NOW MULTIPLY VALUE BY 8
                  ROL VALUE+$1    ;SINCE VALUE HAS ALREADY
                  ASL VALUE       ;BEEN MULTIPLIED BY 2
                  ROL VALUE+$1    ;A SIMPLE MULTIPLY BY 4 GIVES
                  CLC
                  ADC VALUE       ;ADD IN 2xVALUE TO 8xVALUE
                  STA VALUE       ;TO OBTAIN 1OxVALUE
                  PLA
                  ADC VALUE+$1
                  STA VALUE+$1
                  PLA
                  PLP
                  RTS

Each time this routine is called, it multiplies the contents of VALUE
by ten, leaving all registers unchanged.

     The final step in the algorithm (adding in the digit to the 16-
bit number) is trival at this point.  The final decimal input routine
could be:

          ; DECIMAL INPUT ROUTINE
          ;
          ; NOTE: THIS ROUTINE ASSUMES THAT GETLN HAS BEEN



          ;       CALLED AND THAT THE X-REGISTER POINTS TO
          ;       THE FIRST VALID DECIMAL DIGIT IN PAGE 2.
          ;       UPON EXIT, THE X-REGISTER POINTS TO  THE
          ;       FIRST NON-DIGIT ENCOUNTERED.
          ;
          ;
          DECINP:
                  PHP             ;SAVE STATUS
                  PHA             ;AND ACC
          ;
                  LDA #$0         ;INITIALIZE VALUE
                  STA VALUE       ;TO ZERO
                  STA VALUE+$1
          ;
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          DECLP   LDA INPUT,X     ;GET THE NEXT DIGIT
                  JSR TSTDEC      ;IS IT REALLY A DIGIT?
                  BCC ALDONE      ;IF NOT, QUIT
                  AND #$F         ;OTHERWISE CONVERT TO A NUMBER
                  JSR MULT10      ;MULTIPLY VALUE BY 10
                  CLC 
                  ADC VALUE       ;AND ADD IN CURRENT DIGIT
                  STA VALUE
                  BCC DECLP       ;IF NOT CARRY, LOOP BACK
                  INC VALUE+$1    ;IF A CARRY EXISTS, ADD ONE
                  JMP DECLP       ;TO VALUE+$1 AND LOOP BACK
          ;
          ALDONE  PLA             ;RESTORE REGISTERS
                  PLP
                  RTS
          ;
          ;
          ; TSTDEC: TEST ACC TO SEE IF IT IS A VALID DECIMAL
          ;         DIGIT.  IF SO, THE CARRY FLAG IS SET.
          ;         OTHERWISE THE CARRY FLAG IS CLEAR.
          ;
          TSTDEC:
                  CMP #"0"
                  BLT NOTDEC
                  CMP #"9"+$1
                  BGE NOTDEC
                  SEC
                  RTS
          ;
          NOTDEC  CLC
          RTS
          ;
          ;
          ; MULT 100 MULTIPLIES VALUE BY TEN
          ;        (SEE ABOVE)
          ;
          MULT100
                  PHP



                  PHA
                  ASL VALUE
                  ROL VALUE+$1
                  LDA VALUE+$1
                  PHA
                  LDA VALUE
                  ASL VALUE
                  ROL VALUE+$1
                  ASL VALUE
                  ROL VALUE+$1
                  CLC
                  ADC VALUE
                  STA VALUE
                  PLA
                  ADC VALUE+$1
                  STA VALUE+$1
                  PLA
                  PLP
                  RTS
          ;
          ; THAT'S ALL FOLKS...
          ;
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This routine does suffer from a few drawbacks.  First, it does not
check for overflow.  Second, it terminates entry upon the first non-
digit encountered, which means that bad data entries will go
undetected.  Finally, if the first character encountered is not a dec-
imal digit, the routine immediately returns and zero is returned in
value.

     Luckily, these three problems are easily handled.  To check
for overflow, check the carry flag to see if it is set after each ROL
instruction in the MULT10 routine, and check the carry flag after
the addition in the DECINP routine.  If the carry flag is ever set at
any of these points overflow has occurred.

     The second problem (termination on the first non-digit) is a
problem because it allows illegal data entries to go unchecked.
Typically, numeric input should be terminated by either a space,
a return, or a comma (or any other special character you might
think of).  If one of these special characters is not encountered,
an input error should result.  This problem is easily handled by
checking the first non-digit character to make sure it is one of the
allowable delimiters.

     The last problem (invalid first character) is simply an exten-
sion of the second problem.  Handling this problem is likewise an
easy one to solve.  First, delete all leading blanks (since leading
blanks should be allowable in a number).  Next, test the first non-
blank to insure that it is a valid decimal digit.  If not, report an error.
The following routine takes all of these factors into account and
more or less simulates the integer input in Apple's Integer BASIC:



          DECINP:
                  PHP
                  PHA
          ;
          DOIT:
                  LDA #$0         ;INIT VALUE
                  STA VALUE
                  STA VALUE+$1
                  JSR BLKDEL      ;DELETE LEADING BLANKS
                  JSR TSTDEC      ;IS FIRST NON-BLANK A DIGIT?
                  BCC BADDIG      ;IF NOT, INFORM THE USER
          ;
          DECLP   LDA INPUT,X     ;GET NEXT (OR FIRST) DIGIT
                  INX             ;MOVE TO NEXT CHARACTER
                  JSR TSTDEC      ;IS IT A DIGIT?
                  BCC ALDONE      ;IF NOT, QUIT
                  AND #SF         ;CONVERT TO A NUMBER
                  JSR MULT10      ;MULTIPLY VALUE BY 10
                  BVS OVRFLW      ;IF OVERFLOW, INFORM USER
                  CLC
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                  ADC VALUE       ;ADD CURRENT DIGIT
                  STA VALUE       ;TO VALUE
                  BCC DECLP
                  INC VALUE+$1    ;IF CARRY, INCREMENT VALUE+
                  BNE DECLP       ;IF NO OVERFLOW, LOOP BACK
                  JMP OVRFLW      ;IF OVRFLOW, INFORM USER
          ;
          ALDONE  CMP #","        ;TEST FOR VALID DIGIT
                  BEQ QUIT        ;DELIMITERS
                  CMP #" "
                  BEQ QUIT
                  CMP #$8D        ;RETURN IS VALID
                  BEQ QUIT
                  JSR PRINT       ;PRINT ROUTINE FROM A PREVIOUS
                  HEX 8D          ;CHAPTER
                  ASC "RETYPE NUMBER"
                  HEX 8D00
                  JSR GETLN       ;READ A LINE OF TEXT
                  LDX #$0
                  JMP DOIT
          ;
          OVRFLW  JSR PRINT
                  HEX 8D
                  ASC ">65535"
                  HEX 8D00
                  JSR GETLN       ;GET A NEW LINE OF TEXT
                  LDX #$0
                  JMP DOIT
          ;
          ;
          QUIT:
                  PLA



                  PLP
                  RTS
          ;
          ;
          ; BLANK DELETION ROUTINE
          ;
          BLKDEL  LDA INPUT,X
                  CMP #" "
                  BNE BLKD1
                  INX
                  BNE BLKDEL
          ;
          BLKD1   RTS
          ;
          ; MULTIPLY BY 10 ROUTINE
          ;
          MULT10  PHA             ;CAN'T SAVE CARRY, V IS OVRFLW
          ;
                  ASL VALUE
                  ROL VALUE+$1
                  BCS MOVRFL
                  LDA VALUE+$1
                  PHA
                  LDA VALUE
                  ASL VALUE
                  ROL VALUE+$1
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                  BCS MOVRFL
                  ASL VALUE
                  ROL VALUE+$1
                  BCS MOVRFL
                  CLC
                  ADC VALUE
                  STA VALUE
                  PLA
                  ADC VALUE+$1
                  STA VALUE+S1
                  BCS MOVRFL
                  PLA
                  BIT             ;SET V FLAG TO ZERO
                  RTS

          MOVRFL
                  BIT OVERFL      ;SET V FLAG TO ONE
                  RTS
          ;
          NOVRFL HEX 00
          OVERFL HEX 40
          ;
          ;
          ; TSTDEC: TESTS CHARACTER IN ACC TO SEE IF IT IS
          ;         A VALID DECIMAL DIGIT
          ;         CARRY IS SET IF IT IS



          ;
          TSTDEC:
                  CMP #"0"
                  BLT NOTDEC
                  CMP #9"+$1
                  BGE NOTDEC
                  SEC
                  RTS
          ;
          NOTDEC  CLC
                  RTS
          ;
          ;
          INPUT   EQU $200
          VALUE   EPP $0
          ;
          GETLN   EQU $FD67
          ;
          ; NOTE: THE PRINT ROUTINE PROVIDED IN THE PREVIOUS
          ;       CHAPTER MUST BE INCLUDED HERE
          ;
          ;

To use this routine, read a line of data using GETLN.  Set up the
X-register so that it points to the desired decimal digits to be input
(leading blanks allowed) and then JSR DECINP.  Upon returning
from DECINP the desired number (in binary form) will be stored
in VALUE and VALUE+$1.  There are some improvements you
may want to make to this basic routine, such as:
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     1) Modification to handle three, four (or more) byte integers

     2) The ability to specify an address after the JSR DECINP
        with the resulting input integer being stored at that
        address (sort of the inverse of the decimal output routine
        presented earlier in this chapter).

SIGNED DECIMAL INPUT.

     Once we have the unsigned decimal input routine, the signed
decimal input routine becomes very easy.  All we have to do is
check to see if the first non-blank character is a minus sign.  If it
is, increment to the next character and call the unsigned decimal
input routine.  Upon return from the unsigned decimal input rou-
tine, check the high-order bit of VALUE+$1.  If it is set, an overflow
has occured.  If it is not set, then take the two's complement of
the VALUE and VALUE+$1 if a minus sign was used; otherwise,
leave the number alone.  The actual routine is:

          ; SIGNED DECIMAL INPUT
          ;
          SNGDEC:
                  PHP



                  PHA
          ;
          DOSGN:
                  JSR BLKDEL
                  CMP #"-"
                  BNE SGN1
                  LDA #$1         ;SET A FLAG SIGNIFYING
                  STA SIGN        ;A MINUS VALUE
                  INX
                  JMP SGN2
          ;
          SGN1    LDA #$0         ;SET A FLAG SIGNIFYING
                  STA SIGN        ;A POSITIVE NUMBER
          ;
          SGN2    JSR DECINP      ;GET THE UNSIGNED NUMBER
                  LDA VALUE+$1    ;TEST FOR OVERFLOW
                  BMI SGNOVR
                  LDA SIGN        ;TEST TO SEE IF 2'S COMP
                  BFL DONE        ;IS REQUIRED
                  SEC             ;PERFORM 2'S COMP
                  LDA #$0         ;OPERATION
                  SBC VALUE
                  STA VALUE
                  LDA #$0
                  SBC VALUE+$1
          ;
          DONE    PLA
                  PLP
                  RTS
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          ;
          SGNOVR  JSR PRINT
                  HEX 8D
                  ASC ">32767  REENTER"
                  HEX 8D00
                  JSR GETLN
                  LDX #$0
                  JMP DOSGN
          SIGN    EPZ VALUE+$2

     That completes the general numeric I/O routines required
for normal "BASIC-LIKE" operations.  These routines present the
basis for almost all other types of numeric I/O.  By modifying these
routines you can perform multi-byte inputs, single-byte inputs,
etc.  Other types of numeric input, such as octal or binary, are
accomplished by simply modifying the MULT10 and TSTDEC rou-
tines to reflect the new radix, (e.g., you would use MULT8, and
TSTOCT for octal input).  In fact, you could write a general routine
that could input data using any radix, but see the multiply routines
in the next chapter first.
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                           CHAPTER 13

                       MULTIPLICATION AND
                            DIVISION

GENERAL.

     As we've mentioned before, the 6502 microprocessor does
not have a multiply or divide instruction.  Obviously, a multiply or
divide instruction would be very handy to have.  Since the 6502
does not support these functions, we are forced to write subrou-
tines to provide this capability for us.

MULTIPLICATION.

     Multiplication in binary is very, very simple.  In fact, it is iden-
tical to decimal multiplication.  Consider the following DECIMAL
multiplication problem:

          10110
         x  110
          ----- 

Just add (0 x 10110) plus (10 x 10110) plus (100 x 10110)
and you've got the result.  Multiplication by 10 is very easy; just
shift the number one place to the left of the decimal point.  Inci-
dentally, the answer to the above problem is 1112100 (decimal).

     The same procedure is used in multiplying two binary num-
bers.  Just add (0 x 10110) plus (10 x 10111) plus (100 x
10110) get the final result.  For multiplication by powers of two,
just use the ASL or ROL instructions to perform the multiplication
by the desired power of two.  The answer to the above problem
(in binary) is 10000100.
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     It should be noted at this point that an n-bit by m-bit multi-
plication can result in a maximum of an (m+n) bit result.  There-
fore, an 8-bit by 8-bit multiplication can produce results up to 16-
bits in length.  Likewise a 16-bit by 16-bit multiplication can result
in values up to 32 bits in length.  With this in mind we must make
sure that there are enough memory locations reserved to hold
the results produced by our multiplication routine.

     The following multiplication routine uses six zero page mem-
ory locations.  They are used to hold the multiplicand, multiplier,
and partial result.  These locations (all 16-bits for this example)
will be labeled MULCND, MULPLR, and PARTIAL.  After the mul-
tiplication is complete, the low-order 16 bits of the result will be
left in locations (MULPLR, MULPLR+$1) and the high-order 16
bits of the product (if not zero) will be left in locations (PARTIAL,



PARTIAL+$1).  This routine will compute the value:

     (MULPLR, PARTIAL) = MULPLR x MULCND + PARTIAL.
You will note that PARTIAL is added into the result of the multi-
plication.  This is useful in several mathmatical calculations,
including extended-precision multiplication.  For our purposes,
however, just remember to set locations PARTIAL and PAR-
TIAL+$1 to zero before calling the multiply routine.
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     The following multiplication routine is a modified version of
the multiply routine found in the Apple monitor at location $FB63.
(Note: this routine is available only in the older version of the
Apple monitor.  It is not available in the newer Autostart ROM
monitor.)

          ; USMUL- UNSIGNED 16-BIT MULTIPLICATION.
          ;        32 BIT RESULT IS RETURNED IN LOCATIONS
          ;        (MULPLR, PARTIAL).
          ;
          ;
          USMUL:
                  PHA
                  TYA
                  PHA
          ;
          USMUL1  LDY #$10        ;SET UP FOR 16-BIT MULTIPLY
          USMUL2  LDA MULPLR      ;TEST L.O. BIT TO SEE IF SET
                  LSR
                  BCC USMUL4
          ;
                  CLC             ;L.O. BIT SET, ADD MULCND TO
                  LDA PARTIAL     ;PARTIAL PRODUCT
                  ADC MULCND
                  STA PARTIAL
                  LDA PARTIAL+$1
                  ADC MULCND+$1
                  STA PARTIAL+$1
          ;
          ; SHIFT RESULT INTO MULPLR AND GET THE NEXT BIT
          ; OF THE MULTIPLIER INTO THE LOW!ORDER BIT OF
          ; MULPLR
          ;
          USMUL4  ROR PARTIAL+$1
                  ROR PARTIAL
                  ROR MULPLR+$1
                  ROR MULPLR
          ;
          ; SEE IF DONE YET
          ;
                  DEY
                  BNE MUL2
                  PLA
                  TAY



                  PLA
                  RTS
          ;
          ;
          MULPLR  EQP $50
          PARTIAL EPZ MULPLR+$2
          MULCND  EPZ PARTIAL+$2

The following example demonstrates the use of the multiply func-
tion:
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          ; COMPUTE 25 x 66 AND LEAVE RESULT IN
          ; "RESULT"

          EXMPL:
                  LDA #!25        ;25 DECIMAL
                  STA MULPLR
                  LDA /!25        ;H.O. BYTE OF 25
                  STA MULPLR+$1
                  LDA #!66
                  STA MULOND
                  LDA /!66
                  STA MULCND+$1
                  LDA #$0         ;MUST SET PARTIAL TO ZERO
                  STA PARTIAL
                  STA PARTIAL+$1
                  JSR USMUL       ;PERFORM THE MULTIPLICATION
                  LDA MULPLR      ;MOVE PRODUCT TO RESULT
                  STA RESULT
                  LDA MULPLR+$1
                  STA RESULT+$1

                  ETC...

If you are performing a 16-by-16-bit multiplication and the result
is going to be stored in a 16-bit memory location, you may check
for overflow by OR'ing PARTIAL and PARTIAL+$1 together.  If
the result is not zero, then overflow has occurred into the high-
order 16 bits.

     As mentioned previously, PARTIAL can be used to gener-
alize this routine so that 24-, 32-, 48-, 64-, etc. bit multiplications
can be performed.  It is easier, though, just to modify the existing
routine for the higher precision routines.  To do this, simply load
the Y-register with the number of bits you wish to multiply together
and then modify the multiprecision ROR sequence and the mul-
tiprecision ADC sequence to reflect the precision you choose.  Oh
yes, don't forget to reserve more room for MULCND, PARTIAL,
and MULPLR!  An example of a 24 by 24-bit multiplication giving
a 48-bit result might be:



          ; USMUL- UNSIGNED 24-BIT MULTIPLICATION
          ;        48 BIT RESULT IS RETURNED IN LOCATIONS
          ;        (MULPLR, PARTIAL)
          ;
          ;
          USMUL:
                  PHA
                  TYA
                  PHA
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          ;
          USMUL1  LDY #$18        ;SET UP FOR 24-BIT MULTIPLY
          USMUL2  LDA MULPLR      ;TEST L.O. BIT TO SEE IF SET
                  LSR
                  BCC USMUL4
          ;
                  CLC             ;L.O. BIT SET, ADD MULCND TO
                  LDA PARTIAL     ;PARTIAL PRODUCT
                  ADC MULCND
                  STA PARTIAL
                  LDA PARTIAL+$1
                  ADC MULCND+$1
                  STA PARTIAL+$1
                  LDA PARTIAL+$2
                  ADC MULCND+$2
                  STA PARTIAL+$2
          ;
          ; SHIFT RESULT INTO MULPLR AND GET THE NEXT BIT
          ; OF THE MULTIPLIER INTO THE LOW ORDER BIT OF
          ; MULPLR
          ;
          USMUL4  ROR PARTIAL+$2
                  ROR PARTIAL+$1
                  ROR PARTIAL
                  ROR MULPLR+$2
                  ROR MULPLR+$1
                  ROR MULPLR
          ;
          ; SEE IF DONE YET
          ;
                  DEY
                  BNE MUL2
                  PLA
                  TAY
                  PLA
                  RTS
          ;
          ;
          MULPLR  EPZ $50
          PARTIAL EPZ MULPLR+$3
          MULCND  EPZ PARTIAL+$3



It should be stressed that the above routines are for UNSIGNED
mulitiplication only.  Signed multiplication is accomplished by first
noting the signs of the multiplier and multiplicand and setting a
sign flag if the sign bits do not equal each other.  The absolute
value of the multiplier and multiplicand is then taken, and the
unsigned mulitplication routine is used.  After the unsigned mul-
tiplication takes place, the sign flag is tested.  If it indicates that
the original sign bits were not equal to one another, the product
must be negated.
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          ; SIGNED 16-BIT MULTIPLICATION
          ;
          SMUL:
                  PHA
                  TYA
                  PHA
          ;
                  LDA MULCND+$1   ;TEST SIGN BITS
                  XOR MULPLR+$1   ;TO SEE IF H.O BITS ARE UNEQU
                  AND #$80
                  STA SIGN        ;SAVE SIGN STATUS
                  JSR ABS1        ;TAKE ABSOLUTE VALUE OF MULPLR
                  JSR ABS2        ;TAKE ABSOLUTE VALUE OF MULCND
                  JSR USMUL       ;UNSIGNED MULTIPLY
                  LDA SIGN        ;TEST SIGN FLAG
                  BPL SMUL1       ;IF NOT SET, RESULT IS CORRECT
                  JSR NEGATE      ;NEGATE RESULT
          ;
          SMUL1   PLA
                  TAY
                  PLA
                  RTS
          ;
          ;
          ABS1    LDA MULPLR+$1   ;SEE IF NEGATIVE
                  BPL ABS12
          ;
          NEGATE:
                  SEC             ;NEGATE MULPLR
                  LDA #$0
                  SBC MULPLR
                  STA MULPLR
                  LDA #$0
                  SBC MULPLR+$1
                  STA MULPLR+$1
          ;
          ABS12   RTS
          ;
          ;
          ABS2    LDA MULCND+$1   ;SEE IF NEGATIVE



                  BPL ABS22
                  SEC             ;NEGATE MULCND
                  LDA #$0
                  SBC MULCND
                  STA MULCND
                  LDA #$0
                  SBC MULCND+$1
                  STA MULCND+$1
          ;
          ABS22   RTS

As with the unsigned multiply routine, you can check for overflow
by OR'ing PARTIAL with PARTIAL+$1 and checking for zero.  A
signed multiply routine is provided in the older Apple monitor at
location $FB60.  You should study the technique used in the Apple
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monitor for multiplication, as it is somewhat different than the
technique employed here.  It is certainly more complex and like-
wise more difficult to understand, but it is a good exercise in how
to reduce code at the expense of clarity and speed.

DIVISION ALGORITHMS.

     As with multiplication, the algorithm used for binary division
is identical to the algorithm most people use when performing
long division.  First, you take the high-order bit of the divisor, if
set, and then you see if the dividend is divisible.  If it is, you note
this in the running quotient and subtract the current divisor value
from the dividend.  When these steps have been completed for all
digits (or bits), the division is complete.  The division routine is
coded as follows:

          ; UNSIGNED 16-BIT DIVISION
          ; COMPUTES (DIVEND,PARTIAL) / DIVSOR
          ; (I.E., 32 BITS DIVIDED BY 16 BITS)
          ;
          USDIV:
                  PHA
                  TYA
                  PHA
                  TXA
                  PHA

                  LDY #$10        ;SET UP FOR 16 BITS
          USDIV2  ASL DIVEND
                  ROL DIVEND+$1
                  ROL PARTIAL
                  ROL PARTIAL+$1
                  SEC             ;LEAVE DIVEND MOD DIVSOR
                  LDA PARTIAL     ;IN PARTIAL
                  SBC DIVSOR
                  TAX



                  LDA PARTIAL+$1
                  SBC DIVSOR+$1
                  BCC USDIV3
          ;
                  STX PARTIAL
                  STA PARTIAL+$1
                  INC DIVEND
          ;
          USDIV3  DEY
                  BNE USDIV2
          ;
                  PLA
                  TAX
                  PLA
                  TAY
                  PLA
                  RTS
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          ;
          ;
          DIVEND  EPZ $50
          PARTIAL EPZ DIVEND+$2
          DIVSOR  EPZ PARTIAL+$2

It should be mentioned that this routine also computes DIVEND
MOD DIVSOR, and this result is left in PARTIAL.  Should division
by zero be attempted, $FFFF will be returned in DIVEND.  Your
program can check for this problem by AND'ing DIVEND and
DIVEND+$1 together, and then compare the result with the value
$FF.  Because of the method used to check for zero division, an
ambiguity arises since $FFFF divided by one is also $FFFF.  This
problem can be remedied by explicitly checking for division of
$FFFF by one before calling USDIV.  This division routine can be
expanded to any number of bytes of precision by loading the Y-
register with the number of bits of precision required, extending
the precision on the ROL instruction sequence, and extending
the precision on the SBC sequence.

     To use this routine, load a 32-bit dividend into locations
DIVEND, DIVEND+$1, PARTIAL, and PARTIAL+$1 (low-order
byte into DIVEND, the most-significant byte into PARTIAL+$1)
and the 16-bit divisor into DIVSOR.  Once this is accomplished,
simply JSR to USDIV.  If you only need to perform a 16-bit by 16-
bit division, just store zeros into PARTIAL and PARTIAL+$1.

          ; EXAMPLE: DIVIDE 195 BY 24 AND PUT THE QUOTIENT
          ;          INTO "RESULT"
          ;          STORE THE MODULO OF 195/24 IN LOCATION
          ;          "MODULO"
          ;
          EXMPL:
                  LDA #!195       ;DECIMAL 195



                  STA DIVEND
                  LDA /!195
                  STA DIVEND+$1
                  LDA #!24        ;DECIMAL 24
                  STA DIVSOR
                  LDA /!24
                  STA DIVSOR+$1
                  LDA #$0         ;PERFORMING A 16 BY 16 DIVISION
                  STA PARTIAL
                  STA PARTIAL
                  JSR USDIV
                  LDA DIVEND
                  STA RESULT
                  LDA DIVEND+$1
                  STA RESULT+$1
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                  LDA PARTIAL
                  STA MODULO
                  LDA PARTIAL+$1
                  STA MODULO+$1

                  ETC ...

     Signed division turns out to be only somewhat more com-
plicated than unsigned division.  As with the signed multiply rou-
tine, a sign flag is set up to determine the final sign of the result.
Likewise, the absolute value of the dividend and divisor is taken,
and then the unsigned division routine is called.  Finally, the quo-
tient is negated if the sign flag is set.

     But there is one little "gotcha" which didn't occur with the
multiply routine.  If a division by zero occurs (within the unsigned
multiply routine) $FFFF is returned.  The only way (using the
unsigned routine) that $FFFF can be returned is if you divide
$FFFF by one.  With the signed routines, however, you get a result
of $FFFF (which is -1 in decimal) by dividing $FFFF by one, one
by $FFFF, or in fact any division where both the positive and
negative versions of a number end up in the divisor and dividend.
Zero division causes the result of $FFFF to be returned.  Since
these cases are not all that rare, some steps have to be taken to
correct the possible ambiguity.  In the signed division routine
which follows, the overflow flag is set or cleared depending on
whether or not a zero division has occurred.  If a division by zero
occurred, the overflow flag will be set.  If a division by zero did not
occur, then the overflow flag will be cleared.  Your programs can
check the overflow flag upon return from the divsion routine and
then take the appropriate action.  You can also use this technique
with the unsigned divsion routine to handle the case of $FFFF
divided by one, if desired.

          ; SIGNED 16-BIT DIVISION ROUTINE



          ; V FLAG IS RETURNED SET IF ZERO DIVIDE OCCURS
          ;
          ; THIS ROUTINE COMPUTES (DIVEND,PARTIAL)/DIVEND
          ; AS WELL AS (DIVEND,PARTIAL) MOD DIVEND

          SDIV:
                  PHA
                  LDA DIVEND+$1   ;CHECK SIGN BITS
                  XOR DIVSOR+$1
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                  AND #$80
                  STA SIGN
                  JSR DABS1       ;ABSOLUTE VALUE OF DIVSOR
                  JSR DABS2       ;ABSOLUTE VALUE OF DIVEND
                  JSR USDIV       ;COMPUTE UNSIGNED DIVISION
                  LDA DIVEND      ;CHECK FOR ZERO DIVIDE
                  AND DIVEND+$1
                  CMP #$FF
                  BEQ OVRFLW
                  LDA SIGN        ;SIGN IF RESULT MUST BE
                  BPL SDIV1       ;NEGATIVE
                  JSR DIVNEG
          ;
          SDIV1   CLV             ;NO ZERO DIVISION
                  PLA
                  RTS

          OVRFLW  BIT SETOVR      ;SET OVERFLOW FLAG
                  PLA
                  RTS
          ;
          SETOVR  HEX 40
          ;
          ;
          DIVNEG:
                  LDA DIVSOR+$1
                  BPL DABS12
                  SEC
                  LDA #$0
                  SBC DIVSOR
                  STA DIVSOR
                  LDA #$0
                  SBC DIVSOR+$1
                  STA DIVSOR+$1
          ;
          DABS12  RTS
          ;
          ;
          DABS2   LDA DIVEND+$1
                  BPL DABS22
                  SEC
                  LDA #$0
                  SBC DIVEND



                  STA DIVEND
                  LDA #$0
                  SBC DIVEND+$1
                  STA DIVEND+$1
          ;
          DABS22  RTS

     That pretty much wraps up multiplication and division.  The
basic routines in this chapter can be modified for special purpose
applications quite easily.  These routines were written with speed
and ease of understanding in mind.  Obviously, quite a bit of code
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can be saved by using loops in several places, especially when
expanding beyond 16 bits, but generally speed is much more
important than four or five bytes.
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                           CHAPTER 14

                         STRING HANDLING
                           OPERATIONS

STRING HANDLING.

     Numbers are okay, but string handling, as in BASIC, is the
part that is fun.  Character strings are represented in computer
memory in a multitude of ways, but despite how a string is imple-
mented in computer memory, it always has at least three attri-
butes: (1) a maximum length, i.e., the number of bytes allocated
to it; (2) a dynamic "run-time" length giving the current number
of bytes currently being used in the string and (3) a starting
address in memory.

     Without going into the gory details of how any particular
language stores its strings, certain conventions will be adopted
due to the structure of LISA.  Strings, for the remainder of this
book, will take one of three forms:

     1) A string will consist of a group of characters starting at a
        specified address and terminated by a special byte value,
        such as $00, (used in the PRINT routine several chapters
        ago).

     2) A string may consist of a group of characters starting at
        a known location and terminated by a character whose
        high-order bit is opposite the rest of the string.

     3) A string will consist of a length byte followed by the num-



        ber of characters specified in the length byte.

     The first two versions of a string presented here are useful
mainly for input/output purposes.  $00 is usually used as a delim-
iter for outputting characters, since it allows the entire 128 normal
ASCII characters to be output.  For input, $8D (carriage return) is
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usually used, since carriage return is used to terminate input in
most cases.  The second version of strings presented here is a
specialized version of Type 1.  By specifying that the last byte in
the string contains an inverted high-order bit, there is no need for
a trailing byte.  It should be noted that this method restricts you to
a maximum of 128 characters, as opposed to a maximum of 255
characters, possible with Type 1 strings, but you save a byte for
each declared string.  LISA has a special pseudo opcode that
stores strings in this manner.  The pseudo opcode is called, "DCI,"
and it stores strings in memory with the last character containing
an inverted high-order bit.  Refer to the LISA documentation for
further details.

     The third type of string (a length byte followed by the string
itself) is the most common type of string used, because it is the
most convenient to use.  With it, string functions such as conca-
tenation, length, and substring become trivial.  For most of the
string handling routines presented in this chapter, this type of
string will be used.  Since it is possible to have Type 1, 2, and 3
strings within a program, it seems we will need conversion rou-
tines to be able to convert Type 1 and Type 2 strings to Type 3
strings.  These routines are very easy to write, so let's tackle them
first.

     To convert Type 1 strings to Type 3 strings we must have
three pieces of information.  First, we need to know the beginning
address of the Type 1 string.  Second, we need to know the
beginning address of the Type 3 string, where the converted Type
1 string is to be stored.  Finally, we need to know the value of the
delimiting character used in the Type 1 string.  For our routine, we
will assume that these three pieces of information are passed in
locations Type1, Type3, DLMTR.  Both Type1 and Type3 will be
16-bit addresses and will require two zero page locations each.
DLMTR, obviously, will require only one byte in page zero.  These
locations must be set up with the appropriate data before our
subroutine is called.

     The routine will pick a character out of the string pointed to
by Type1 and store it in the corresponding location in the string
pointed to by Type 3, with one slight change.  Since the first byte
of the string pointed to by Type3 must be reserved for the length
of the string, it becomes necessary to increment the value in
Type3 by one before storing the string in the designated area.
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Finally, when the string has been transferred, the length of the
string must be stored in the first location.  The routine which does
all of these mystical and magical things follows:

          ; TYPE1 TO TYPE3 STRING CONVERSIONS
          ;
          ; POINTERS TO THE RESPECTIVE DATA AREAS
          ; ARE PASSED IN "TYPE1" AND "TYPE2"
          ; "DLMTR" CONTAINS THE STRING DELIMITER BEING USED
          ;
          TYPE1   EPZ $0
          TYPE3   EPZ TYPE1+$2
          DLMTR   EPZ TYPE3+$2
          ;
          ;
          T1TO3:
          ;
                  PHP             ;SAVE ALL THE REGISTERS
                  PHA
                  TYA
                  PHA
          ;
                  INC TYPE3       ;ADD ONE TO TYPE3 POINTER
                  BNE T1TO3A      ;SO THAT IT POINT TO THE FIRST
                  INC TYPE3+$1    ;AVAILABLE CHAR PAST THE LENGTH
          ;
          T1TO3A:
                  LDY #$0         ;SET UP INDEX TO ZERO
          T1TO3B  LDA (TYPE1),Y   ;FETCH TYPE1 CHARACTER
                  CMP DLMTR       ;IS IT THE DELIMITER?
                  BEQ T1TO3C      ;IF SO, PREPARE TO QUIT
                  STA (TYPE3),Y   ;OTHERWISE TRANSFER
                  INY             ;MOVE TO NEXT CHARACTER
                  BNE T1TO3B      ;DON'T ALLOW STRINGS > 255
                  DEY             ;IF OVERFLOW OCCURS, TRUNCATE
          ;
          ;
          T1TO3C  LDA TYPE3       ;DECREMEOT TYPE 3 POINTER SO
                  BNE T1TO3D      ;IT POINTS TO LENGTH BYTE AGAIN
                  DEC TYPE3+$1
          T1TO3D  DEC TYPE3
          ;
                  TAY             ;TRANSFER LENGTH OF STRING TO A
                  LDY #$0         ;SET UP INDEX TO LENGTH BYTE
                  STA (TYPE3),Y   ;STORE LENGTH IN FIRST BYTE
          ;
                  PLA             ;RESTORE THE REGISTERS
                  TAY
                  PLA
                  PLP
                  RTS

     If you read a line of text from the Apple keyboard, using the
monitor GETLNZ routine, you could convert it to a Type 3 string
using the following code sequence:
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                  LDA #$200       ;INIT TYPE1 TO $200
                  STA TYPE1
                  LDA /$200
                  STA TYPE1+$1
          ;
                  LDA #STRING     ;PUT ADDRESS OF DESTINATION
                  STA TYPE3       ;STRING INTO "TYPE3"
                  LDA /STRING
                  STA TYPE3+$1
          ;
                  LDA #$8D        ;INITILIZE THE DELIMITER
                  STA DLMTR       ;CHARACTER TO RETURN
                  JSR T1TO3       ;PERFORM THE CONVERSION

                  ETC.

     Type 2 strings are converted in a similar manner.  The routine
to perform the conversion is listed below:

          ;TYPE 2 TO TYPE 3 STRING CONVERSION
          ;TYPE 2 STRING IS ASSUMED TO BE A STRING WHOSE HIGH
          ;ORDER BITS ARE ALL SET EXCEPT FOR THE LAST CHARACTER
          ;WHOSE HIGH ORDER BIT IS CLEAR
          ;THIS CAN BE MODIFIED BY REPLACING THE "BPL"
          ;INSTRUCTION WITH A "BMI" IF DESIRED

          TYPE2   EPZ $0
          TYPE3   EPZ TYPE2+$2
          ;
          ;
          T2TO3:
                  PHP             ;SAVE THE REGISTERS
                  PHA
                  TYA
                  PHA
          ;
                  INC TYPE3       ;MOVE PAST THE LENGTH BYTE
                  BNE T2TO3A
                  INC TYPE3+$1
          ;
          T2TO3A:
                  LDY #$0         ;INITIALIZE STRING INDEX
          T2TO3B  LDA (TYPE2),Y
                  BPL T2TO3C
                  STA (TYPE3),Y
                  INY
                  BNE T2TO3B      ;PREVENT OVERFLOW
                  DEY             ;TRUNCATE TO 255 CHARS
          ;
          T2TO3C  ORA #$80        ;STORE LAST CHARACTER
                  STA (TYPE3),Y



                  INY             ;ADJUST LENGTH
                  BNE T2TO3D      ;TEST FOR OVERFLOW
                  DEY             ;TRUNCATE IF > 255 CHARS

                              14-4

*****************************************************************

          ;
          T2TO3D  LDA TYPE3       ;MOVE TYPE3 POINTER BACK
                  BNE T2TO3D      ;LENGTH BYTE
                  DEC TYPE3+$1
          T2TO3E  DEC TYPE3
          ;
                  PLA             ;RESTORE THE REGISTERS
                  TAY
                  PLA
                  PLP
                  RTS

Going in the other direction (from Type 3 strings to Type 1 or Type
2 strings) is rarely used, but just as simple to perform.  Since this
type of conversion is not used that much its design will be left to
the reader as an exercise, should this type of conversion be
required.

DECLARING LITERAL STRINGS.

     Not all strings used within a program are likely to be input
from the keyboard.  Some ability must be provided to enter literal
strings within a program.

     You could count up all the characters in a string and manually
preface the string with a length byte, but that would be very tedi-
ous.  You could enter the string as a Type 1 or Type 2 string; and
then use the conversion routines presented earlier to convert
them to a Type 3 string, but that's still quite a bit of work.  Luckily,
LISA provides a pseudo opcode that does all the work for you.
The pseudo opcode is "STR" and it outputs a string of ASCII
characters prefaced automatically with a length byte.  STR is very
useful for declaring string constants.  Since the APPLE II com-
puter likes to have the high-order bit on for most applications,
strings declared when using the STR pseudo opcode should
always be enclosed by quotes (as opposed to apostrophes).

STRING ASSIGNMENTS.

     Probably the most basic and useful operation that can be
perfomed on a string is a string assignment.  In its simplist form
a string assignment is nothing more than a small in-line coded
loop that transfers data from one location to another.  Assuming
you want to transfer the string in "STR1," to the string at "STR2,"
you might use the following:
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                  LDY STR1        ;GET THE LENGTH BYTE
          LOOP    LDA STR1,Y      ;TRANSFER STRING
                  STA STR2,Y
                  DEY
                  BNE LOOP
                  LDA STR1        ;TRANSFER THE LENGTH OVER
                  STA STR2

As you can see, data bytes 1 through n (where n is the length of
the string) are transferred and then the length of STR1 is stored
in the length byte of STR2.

     This, of course, is a very simple string assignment loop, yet
it is small enough to be coded in-line in most cases.  If you perform
quite a few string assignments within a program, it might be worth
your while to write a routine that allows you to specify the
addresses of the two strings after a JSR, as an example:

                  JSR SASIGN      ;STRING ASSIGNMENT
                  ADR DEST        ;DEST = SOURCE
                  ADR SOURCE
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which only requires 7 bytes per assignment.  Another version of
this special string assignment might take the form:

                  JSR SASGMI      ;IMMEDIATE STRING ASSIGNMENT
                  ADR DEST        ;ADDRESS OF STRING
                  STR "HELLO"     ;STRING TO BE ASSIGNED

This form allows you to assign string constants to a desired string
with a minimum of complexity.  These two methods will be left for
the reader to write as an exercise.  You should look at the print
routines presented in an earlier chapter and use them as a tem-
plate for the string assignment subroutines.

STRING FUNCTIONS.

     One of the most basic string functions is the length function.
It will be the basis of many other string functions which follow.  Its
implementation is trivial.  Since the length of a string is always
stored in the first byte of a string, the length function is simply a
load instruction.  For example, if we have the following string dec-
laration:

                       STRING  STR  "HELLO THERE"

then a simple LDA STRING will load the length of the string into
the accumulator.



     With the length function out of the way, string output is next
on the list.  String output is very easy.  The following routine will
output the string stored at location 'STRING:'

                  LDA STRING      ;CHECK LENGTH TO INSURE
                  BEQ XIT         ;IT IS NOT ZERO
          ;
                  LDY #$0         ;SET UP INDEX TO FIRST CHAR
          LOOP    LDA STRING+$1,Y ;GET THE NEXT CHARACTER
                  JSR COUT        ;OUTPUT IT
                  INY
                  CPY STRING      ;DONE YET?
                  BLT LOOP

Note that the Y-register is loaded with zero, and then the accu-
mulator is loaded from location STRING plus one.  This insures
us that the Y-register will be equal to the length of the string when
it is pointing to one character beyond the end of the string, so that
the Y-register will always be less than the length of the string
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while it contains a valid index.  This allows us to use the BLT
instruction to terminate the loop.

     A much better string output routine would be a subroutine
that causes the address of the string to be output immediately
after the JSR, much like the print routines presented earlier in the
book.  This routine would be coded as follows:

          PRTSTR:
                  STA ASAVE
                  STY YSAVE
                  PLA             ;GET RETURN ADDRESS FROM
                  STA RTNADR      ;THE 6502 STACK
                  PLA
                  STA RTNADR+$1
          ;
                  JSR INCRTN      ;INCREMEOT THE RETURN ADDRESS
                  LDY #$0
                  LDA (RTNADR),Y  ;GET L.O. ADDRESS OF STRING
                  STA ZPAGE
                  INY
                  LDA (RTNADR),Y  ;GET H.O.ADDRESS OF STRING
                  STA ZPAGE+$1
          ;
                  JSR INCRTN      ;MOVE RTNADR PAST THE ADDRESS
                  JSR INCRTN      ;BYTES
          ;
          ;
          ;  AT THIS POINT, ZPAGE POINTS TO THE STRING WHICH
          ;  IS SUPPOSED TO BE OUTPUT
          ;
                  DEY             ;RESET Y REG TO ZERO



                  LDA (ZPAGE),Y   ;GET THE LENGTH OF THE STRING
                  STA LENGTH      ;AND STORE IT IN "LENGTH"
          PRTS1   INY             ;MOVE TO THE NEXT CHARACTER
                  CPY LENGTH      ;ARE WE THROUGH YET?
                  BEQ PRTS2
          ;
                  LDA (ZPAGE),Y   ;GET THIS CHARACTER
                  JSR COUT        ;AND OUTPUT
                  JMP PRTS1       ;MOVE TO NEXT CHAR AND REPEAT
          ;
          PRTS2   LDA ASAVE       ;RESTORE THE REGISTERS
                  LDY YSAVE
                  JMP (RTNADR)    ;SIMULATE AN RTS
          ;
          ;
          ;
          ASAVE   EPZ $0          ;ZERO PAGE WORKSPACE
          YSAVE   EPZ ASAVE+$1
          ZPAGE   EPZ YSAVE+$1
          RTNADR  EPZ ZPAGE+$2

          COUT    EQU $FDED       ;COUT ROUTINE
                  END
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     This routine is used by JSR'ing to PRTSTR and following
the JSR with the address of the string to be output.

EXAMPLE:

                  JMP START
          STRING  STR "HELLO THERE"
          ;
          START   JSR PRTSTR
                  ADR STRING

                  ETC.

prints "HELLO THERE" onto the current output device.  Naturally,
any string may be output using PRTSTR, not just strings declared
using the STR pseudo opcode.

STRING CONCATENATION.

     String concatenation is the operation of taking two strings
and joining them together to make a single long string.  Typically,
two strings are combined and their concatenated result is stored
in a third string.

     String concatenation is accomplished in the following man-
ner.  First, the lengths of the two source strings are added together.
If this result is less than the maximum length of the destination



string, then things are fine.  If the length is greater than the max-
imum length of the string, then an error must be reported.  If the
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sum of the two source string lengths is less than the maximum
number of characters possible for the destination string, the sum
of the two lengths is stored in the first byte of the destination
string.  This will be the length of the new string.  Next, the first
string is transferred to the destination string.  Finally, the second
source string is transferred to the destination string immediately
after the first string.  A short routine which concatenates STR1
and STR2 storing the result at STR3, is:

          ; STRING CONCATENATION EXAMPLE
          ;
          ;
          ;
          ;
          ;FIRST, CHECK LENGTHS
          ;
                  CLC
                  LDA STR1
                  ADC STR2
                  BCS ERROR       ;> 255 CHARS IS ALWAYS BAD
                  STA STR3        ;STORE LENGTH IN STR3
                  LDA MAXLEN      ;GET MAXIMUM LENGTH OF STR3
                  CMP STR3        ;AND COMPARE TO DESIRED LENGTH
                  BLT ERROR       ;IF LESS THAN, AN ERROR MUST
                                  ;BE FLAGGED
          ;
          ;
          ; THINGS ARE FINE HERE, SO MOVE STR1 TO STR3
          ;
                  LDY #$0
          CONCT1  LDA STR1+$1,Y   ;GET CHAR FROM STR1
                  STA STR3+$1,Y   ;AND MOVE TO STR3
                  INY
                  CPY STR1        ;DONE YET?
                  BLT CONCT1
          ;
          ;
          ; NOW, TRANSFER STR2 TO THE TAIL END OF STR3
          ;
                  LDX #$0
          CONCT2  LDA STR2+$1,X   ;GET CHAR FROM STR2
                  STA STR3+$1,Y   ;TRANSFER TO STR3
                  INY
                  INX
                  CPX STR2        ;DONE YET?
                  BLT CONCT2

                  ETC...



SUBSTRING OPERATIONS.

     One very important string function is the substring function,
which allows the programmer to extract a portion of a string and
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assign the extracted portion to another string.

     To extract a substring, we need four pieces of information:
the address of the source string, the address of the destination
string, a value specifying the start of the substring, and a length
of the substring.  The specified length is checked to make sure it
is not greater than the maximum permissible string length for the
destination string.  If it is, an error must be reported.  If the length
of the substring is less than the maximum length allowable by the
destination string, then the length byte is stored in the first location
of the destination string.  One final check must be made.  We must
insure that there are at least "length" characters the source string
beginning at the index specified.  Otherwise, unfortunately, an
error must be reported.  The following routine extracts the substr-
ing beginning at location "START" in string "STR1" and of length
"LENGTH."  The resulting substring is stored into "STR2."

          ; SUBSTRING EXAMPLE
          ;
          STR1    EPZ $0
          STR2    EPZ STR1+$2
          START   EPZ STR2+$2
          LEN1    EPZ START+$1
          MAXSTR  EPZ LEN1+$1
          INDEX   EPZ MAXSTR+$1
          LENGTH  EPZ INDEX+$1
          ;
          ;
          SUBSTR:
                  PHP
                  PHA
                  TYA
                  PHA
          ;
          ;
          ; CHECK TO SEE IF LENGTH OF SUBSTRING IS GREATER
          ; THAN THE LENGTH OF STR2 (PASSED IN MAXSTR)

                  LDA MAXSTR
                  CMP LENGTH
                  BLT ERROR

          ;
          ; CHECK TO SEE IF ENOUGH CHARS IN STR1
          ;
                  CLC
                  LDA INDEX
                  BEQ ERROR       ;INDEX OF ZERO NOT ALLOWED



                  ADC LENGTH
                  BCS ERROR       ;IF > 255 THEN ALWAYS AN ERROR
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                  LDY #$0
                  LDA (STR1),Y    ;GET LENGTH OF SOURCE STRING
                  CMP LEN1        ;SEE IF GREATER OR EQUAL
                  BLT ERROR       ;ERROR OTHERWISE
          ;
          ; NOW, TRANSFER THE SUBSTRING
          ;
                  LDA LENGTH
                  STA (STR2),Y    ;INIT LENGTH
                  CLC             ;SET UP POINTER TO BEGINNING
                  LDA STR1        ;OF SUBSTRING
                  ADC INDEX
                  STA STR1
                  BCC SUBST1
                  INC STR1+$1
          ;
          SUBST1  INC STR2        ;INCREMENT PAST LENGTH BYTE
                  BNE SUBST2
                  INC STR2+$1
          ;
          SUBST2  CPY LENGTH
                  BGE SUBST3
                  LDA (STR1),Y
                  STA (STR2),Y
                  INY
                  JMP SUBST2
          ;
          SUBST3  PLA
                  TAY
                  PLA
                  PLP
                  RTS

STRING COMPARISONS.

     Probably the most important string handling tool is the ability
to compare two strings to see if they are equal or not equal.  The
ability to see if one string is less than or greater than another
string is also quite useful for such functions as alphabetizing lists
and so on.  These string relations are defined as follows:

     1) Two strings are equal if and only if their lengths are equal
        and each character in the first string equals the corre-
        sponding character in the second string.

     2) Two strings are not equal if either their length bytes do
        not match up or one of the characters in the first string
        does not match the corresponding character in the sec-
        ond string.



     3) A string is less than a second string if, while traversing
        the string from the first character to the length of the small-
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        est string, a character is encountered in one string which
        is less than the corresponding character in the second
        string.  If the lengths are not equal, and all the characters
        match up to the length of the shorter string, then the
        shorter string is considered to be less than the longer
        string.  These requirements allow "ABC" to be less than
        "SUN" and to be less than "ABCD."  This type of ordering
        is called, "lexicographical ordering," which is used in dic-
        tionaries and the like.

     4) The requirements for a string to be greater than a second
        string are identical to the less than requirements, except
        you must substitute "greater than" for all the occurrences
        of "less than" in the preceeding paragraph.

     In the subroutines which follow, tests are made for equality/
inequality, less than/greater or equal, and greater than/less than
or equal.  In each case, the accumulator is returned with the value
TRUE (i.e. $1) if the first condition is true (i.e. EQUAL / LESS
THAN / GREATER THAN), or it is returned with FALSE ($0) if the
second condition is true (i.e. NOT EQUAL / GREATER OR
EQUAL / LESS THAN OR EQUAL).  In each case, a pointer to the
first string is passed in (STR1, STR1 +$1) and a pointer to the
second string is passed (STR2, STR2+$1).  These locations
must be set up before the routine is called.

          ; STRING COMPARE #1
          ; TEST FOR EQUALITY
          ;
          ; THIS ROUTINE COMPUTES THE COMPARISON
          ;      (STR1) = (STR2)
          ; AND RETURNS TRUE OR FALSE IN THE ACCUMULATOR

          STREQU:
                  PHP             ;PRESERVE C & V FLAGS
                  TYA
                  PHA             ;SAVE THE Y REGISTER
          ;
                  LDY #$0
                  LDA (STR1),Y
                  CMP (STR2),Y    ;COMPARE LENGTHS
                  BNE NOTEQL      ;AND QUIT IF NOT EQUAL
          ;
          ; IF LENGTHS ARE EQUAL, SET UP INDICIES
          ; TO THE BEGINNING OF THE STRINGS
          ;
                  STA LENGTH      ;SAVE LENGTH OF STRINGS
                  INC STR1
                  BNE SEQU1
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                  INC STR1+$1
          ;
          SEQU1   INC STR2
                  BNE SEQU2
                  INC STR2+$1
          ;
          SEQU2   LDA (STR1),Y    ;PERFORM COMPARISONS
                  CMP (STR2),Y
                  BNE SEQU3
                  INY
                  CPY LENGTH
                  BLT SEQU2
          ;
          ;
          ; THE STRINGS ARE EQUAL
          ;
          ;
                  JSR DECSTR      ;RESTORE STR1,STR2
          ;
                  PLA             ;RESTORE Y & PSW REGISTERS
                  TAY
                  PLP
                  LDA #TRUE       ;RETURN TRUE
                  RTS
          ;
          ;
          ; STRINGS ARE NOT EQUAL HERE
          ;
          SEQU3   JSR DECSTR
          NOTEQL  PLA             ;RESTORE Y & PSW
                  TAY
                  PLP
                  LDA #FALSE      ;RETURN FALSE IF NOT EQUAL
                  RTS
          ;
          ;
          ;
          ;
          ; DECSTR- RESETS STR POINTERS TO THEIR ORIGINAL
          ;         VALUESVALUES

          DECSTR:
  s66             LDA STR1        ;RESTORE STRn POINTERS
                  BNE SEQU4
                  DEC STR1+$1
          SEQU4   DEC STR1
                  LDA STR2
                  BNE SEQU5
                  DEC STR2+$1
          SEQU5   DEC STR2
                  RTS
          ;



          ;
          ;
          ;
          ;
          ; STRING COMPARE #2
          ; TEST FOR LESS THAN
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          ;
          ; THIS ROUTINE COMPUTES
          ;   STR1 < STR2
          ;
          ; ON RETURN, IF STR1 < STR2 THEN THE ACCUMULATOR IS
          ; RETURNED WITH TRUE. IF STR1 >= STR2 THEN THE
          ; ACCUMULATOR IS RETURNED WITH THE VALUE FALSE
          ;
          ;
          STRLES:
                  PHP             ;PRESERVE C & V FLAGS
                  TYA             ;SAVE Y REGISTER
                  PHA
          ;
                  LDY #$0
                  LDA (STR2) ,Y   ;COMPUTE THE MINIMUM LENGTH
                  STA MINLEN
                  CMP (STR1) ,Y
                  BGE STRLS1
                  LDA (STR1) ,Y
                  STA MINLEN
          ;
          STRLS1  INY             ;TEST LOOP
                  LDA (STR1) ,Y
                  CMP (STR2) ,Y
                  BGE NOTLES
                  CPY MINLEN
                  BLT STRLS1
                  BEQ STRLS1
          ;
          ; ALL CHARACTERS UP TO THE MINIMUM LENGTH ARE EQUAL
          ; NOW SEE IF THE LENGTH OF STR1 IS LESS THAN THE
          ; LENGTH OF STR2
          ;
                  LDY #$0
                  LDA (STR1),Y
                  CMP (STR2),Y
                  BGE NOTLES
          ;
          ; NOW STR1 < STR2
          ;
                  PLA             ;RESTORE THE Y REGISTER
                  TAY
                  PLP             ;RESTORE PSW
                  LDA #TRUE       ;TRUE BECAUSE STR1 < STR2
                  RTS



          ;
          ;
          NOTLES  PLA
                  TAY
                  PLP
                  LDA #FALSE
                  RTS
          ;
          ;
          ;
          ; STRING COMPARE #3
          ; TEST TO SEE IF STR1 > STR2
          ;
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          ; THIS ROUTINE COMPUTES THE RELATION:
          ;       STR1 > STR2
          ;
          ; THE ACCUMULATOR IS RETURNED WITH THE VALUE TRUE ($1)
          ; IF THE RELATION HOLDS, FALSE ($0) IS RETURNED
          ; OTHERWISE.
          ;
          ;
          STRGTR:
                  PHP
                  TYA
                  PHA
          ;
                  LDY #$0         ;GET THE MINIMUM LENGTH
                  LDA (STR2),Y
                  STA MINLEN
                  CMP (STR1),Y
                  BGE SGTR1
                  LDA (STR1),Y
                  STA MINLEN
          ;
          SGTR1   INY
                  LDA (STR2),Y
                  CMP (STR1),Y
                  BGE NOTGTR
                  CPY MINLEN
                  BLT SGTR1
                  BEQ SGTR1
          ;
          ; STRINGS ARE EQUAL UP TO THE MINIMUM LENGTH
          ;
                  LDY #$0
                  LDA (STR1),Y
                  CMP MINLEN
                  BEQ NOTGTR
          ;
                  PLA
                  TAY
                  PLP



                  LDA #TRUE
                  RTS
          ;
          NOTGTR  PLA
                  TAY
                  PLP
                  LDA #FALSE
                  RTS
          ;
          ;
          ;
          TRUE    EQU $1
          FALSE   EQU $0
          STR1    EPZ $0
          STR2    EPZ STR1+$2
                  END

     Once again, it will be left to the reader to implement better
parameter passing techniques.  These routines are presented
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here solely as examples.  It is probably more practical to pass the
string addresses after the JSR as we did with the print subroutine.
The string compare subroutines might be called in one of the
following manners:

                  JSR STREQU      ;IS STR1 = STR2?
                  ADR STR1
                  ADR STR2

                  - OR - 

                  JSR STRLES      ;IS STR1 < STR2?
                  ADR STR1
                  ADR STR2

                  - OR - 

                  JSR STRGTR      ;IS STR1 > STR2?
                  ADR STR1
                  ADR STR2

                  ETC...

HANDLING ARRAYS OF CHARACTERS.

     Sometimes the character strings being compared do not



have variable lengths.  As such, the extra code and time required
to test for the lengths of the two strings being compared is not
necessary.  For example, all the mnemonics used by LISA are
three characters long.  This means that all that has to be done is
insure that the mnemonic typed in by the user is three characters
in length and then compare those three characters to the char-
acter triplets in the mnemonic table.  The following routine takes
"NUMCHR" characters from the in buffer and compares them
against characters within the table beginning at location "TABLE:"

          NUMCHR  EQU $3          ;INIT FOR THREE-CHAR LOOK-UP
          PTRSAV  EPZ $0          ;POINTER SAVE AREA
          TBLADR  EPZ PRTSAV+$1   ;USED TO HOLD TABLE ADDRESS
          INPUT   EQU $200        ;GETLN INPUT BUFFER
          ;
          ; THIS ROUTINE IS ENTERED WITH THE X-REGISTER POINTING
          ; TO THE FIRST CHARACTER TO BE COMPARED IN THE INPUT
          ; BUFFER (PAGE TWO)
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          ; ON RETURN, THE X REGISTER POINTS TO THE FIRST CHAR
          ; PAST THE ARRAY OF LENGTH "NUMCHR" (DEFINED ABOVE)
          ;
          ;
          ;
          LOOKUP:
                  PHP
                  TYA
                  PHA
          ;
                  STX PRTSAV      ;SAVE INDEX TO CHAR ARRAY
                  LDA #TABLE      ;SET UP POINTER TO TABLE
                  STA TBLADR
                  LDA /TABLE
                  STA TBLADR+$1
          ;
                  LDY #$0
          LOOP    LDA INPUT.X
                  CMP (TBLADR),Y
                  BNE NXTENT
                  INX
                  INY
                  CPY #NUMCHR
                  BLT LOOP
          ;
          ; GOOD MATCH HERE,  RETURN TRUE
          ;
                  PLA
                  TAY
                  PLP
                  LDA #TRUE
                  RTS
          ;



          ;
          ; CURRENT CHARACTER ARRAY DOES NOT MATCH, SET UP INDEX
          ; TO THE NEXT ELEMENT IN THE TABLE (IF ONE EXISTS)
          ;
          NXTENT:
                  CLC
                  LDA TBLADR
                  ADC #NUMCHR
                  STA TBLADR
                  BCC NXTE1
                  INC TBLADR+$1
          ;
          ; RESTORE X REGISTER
          ;
          NXTE1   LDX PTRSAV
                  LDY #$0         ;RE-INIT Y REGISTER
          ;
          ;
          ; CHECKTO SEE IF AT END OF TABLE
          ;
          ;
                  LDA TBLADR
                  CMP #TBLEND
                  LDA TBLADR+$1
                  SBC /TBLEND
                  BLT LOOP
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          ;
          ; NO MORE ENTRIES, RETURN FALSE AND LEAVE X REGISTER
          ; POINTING TO THE BEGINNING OF THE TABLE
          ;
                  PLA
                  TAY
                  PLP
                  LDA #FALSE
                  RTS
          ;
          ;
          ;
          ; SAMPLE TABLE, EACH ENTRY MUST CONTAIN "NUMCHR" NUM
       ; OF CHARACTERS (IN THIS CASE, THREE)
          ; OF CHARACTERS (IN THIS CASE, THREE)
          ;
          ;
          TABLE   ASC "ABC"
                  ASC "DEF"
                  ASC "GHI"
                  ASO "JKL"
                  ASC "MNO"
                  ASC "PQR"
                  ASC "STU"
                  ASC "VWX"
                  ASC "YZ "



                  ASC "ETC"
          TBLEND  EQU *
                  END

Note that TBLEND is defined as the next available location after
the table.

     Table operations on the 6502 microprocessor can be han-
dled very efficiently.  Especially when the table is less than 256
bytes in length.  The previous routine was written as a general
purpose table look-up routine.  It will work for tables of any length
(representable in the 6502 memory space).  For tables less than
256 bytes in length (such as the alphabet table used in the pre-
vious routine), lots of code and time can be saved by incrementing
the Y-index register instead of a 16-bit memory location.  Addi-
tional time can be saved by using the indexed by Y addressing
mode instead of the indirect indexed by Y addressing mode.  The
former routine, rewritten for small tables, is:

          NUMCHR  EQU $3          ;INIT FOR THREE-CHAR LOOK-UP
          PTRSAV  EPZ $0          ;POINTER SAVE AREA
          PYSAV   EPZ PRTSAV+$1   ;Y REG SAVE AREA
          INPUT   EQU $200        ;GETLN INPUT BUFFER
          BUFFER  EQU $300        ;BUFFER SAVE AREA
          ;
          ; THIS ROUTINE IS ENTERED WITH THE X-REGISTER POINTING
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          ; TO THE FIRST CHARACTER TO BE COMPARED IN THE INPUT
          ; BUFFER (PAGE TWO)
          ; ON RETURN, THE X REGISTER POINTS TO THE FIRST CHAR
          ; PAST THE ARRAY OF LENGTH "NUMCHR" (DEFINED ABOVE)
          ;
          ;
          ;
          LOOKUP:
                  PHP
                  TXA
                  PHA
                  TYA
                  PHA
          ;
          ; TRANSFER INPUT TO BUFFER SAVE AREA
          ;
                  LDY #$0
          LOOP    LDA INPUT,X
                  STA BUFFER,Y
                  INX
                  INY
                  CPY #NUMCHR
                  BLT LOOP
          ;
          ; NOW, COMPARE BUFFER SAVE AREA TO DATA IN TABLE



          ;
                  LDX #$0
                  LDY #$0
          LOOP0   LDA BUFFER,X
                  CMP TABLE,Y
                  BNE NXTENT
                  INY
                  INX
                  CPX #NUMCHR
                  BLT LOOP0
          ;
          ; A MATCH IS FOUND HERE
          ;
                  PLA
                  TAY
                  PLA
                  TAX
                  INX
                  INX
                  INX             ;LEAVE POINTING AT NEXT CHAR
                  PLP
                  LDA #TRUE
                  RTS
          ;
          ;
          ; INCREMENT TO THE NEXT EXTRY (IF IT EXISTS)
          ;
          NXTENT  CPX #$2
                  BGE NXT1
                  CPX #$1
                  BGE NXT2
                  INY
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          NXT2    INY
          NXT1    INY
                  LDX #$0
                  CPX TBLENG
                  BLT LOOP0
          ;
          ; END OF TABLE HAS BEEN REACHED
          ;
                  PLA
                  TAX             ;LEAVE X REG POINTING TO CHARS
                  PLA
                  TAY
                  PLP
                  LDA #FALSE      ;STRING NOT FOUND
                  RTS
          ;
          ;
          ; SAMPLE TABLE, EACH ENTRY MUST CONTAIN "NUMCHR" NUM
          ; OF CHARACTERS (IN THIS CASE, THREE)
          ;



          ;
          ;
          TABLE   ASC "ABC"
                  ASC "DEF"
                  ASC "GHI"
                  ASC "JKL"
                  ASC "MNO"
                  ASC "PQR"
                  ASC "STU"
                  ASC "VWX"
                  ASC "YZ
                  ASC "ETC"
          TBLENG  EQU *-TABLE
                  END

Note that a table length "TBLENG" is used instead of the end of
table pointer.  Remember the Y-register is only eight bits long.

     Obviously, there are many different ways to compare strings
against other strings, be they in tables or whatever.  This book is
not attempting to cover all possible cases (an impossible task),
but rather, to cover a few cases which may be of general interest.
The techniques used in the preceeding examples can be applied
to other methods of comparing string data.  Hopefully, these
examples have been somewhat of an awakening so that you can
go out and write your own string handling functions.
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                           CHAPTER 15

                         SPECIALIZED I/O

APPLE I/O STRUCTURE.

     One of the reasons the APPLE II computer is so popular is
its powerful I/O structure.  The APPLE II computer was the first
personal computer to feature the "Game I/O" connector with
analog inputs and digital input and output lines.  Although intended
primarily for games and entertainment purposes, the game I/O
lines have been utilized for such things as printer interfaces, RS-
232 lines, and even industrial controllers.  A myriad of peripherals,
including paddles, joysticks, light pens, and color guns, have
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been interfaced to the game I/O connector.  In all, the game I/O
connector makes the APPLE II computer one of the most flexible
computers around.

     To understand the flexiblity of the game I/O connector, it is



necessary to first describe what types of I/O are available at the
game I/O connector.  First, there are three "flag" (or pushbutton)
inputs.  There are four "annunciator" outputs.  There are four 8-bit
analog-to-digital inputs which can measure a resistance between
150 ohms and 150K ohms.  And finally, there is a utility strobe line
available on the game I/O connector.

     In addition to the I/O on the game I/O connector, there are
some other specialized I/O devices available on the APPLE II
computer.  These include the built-in speaker, the cassette input
and output, and the Apple keyboard.  There are also several video
display modes available to the user including LORES and HIRES
graphics, with or without four lines of text at the bottom of the
page.  Controlling these display modes, as well as the I/O on the
game I/O connector, is a simple matter of accessing memory
locations within the APPLE II computer's memory space.

     These memory locations all fall within the 128 bytes in the
$C000 to $C07F range.  For instance, we've already encountered
the Apple keyboard whose input can be obtained at location
$C000.  If bit seven of location $C000 is set, then a key has been
pressed on the Apple keyboard.  If bit seven is clear, then no key
has been pressed and the program must wait for a key to be
pressed if the program requires input.  In order to clear bit seven
of the keyboard location after the desired data has been retrieved
(so that the next time $C000 is accessed you won't read the same
key code again), location $C010 must be accessed.  Accessing
location $C010 clears bit seven of location $C000 so that another
key can be read from the Apple keyboard.  The following routine
works fine as a keyboard input routine:

          KEYIN   LDA $C000
                  BPL KEYIN       ;IF NO KEY PRESSED, LOOP BACK
                  STA $C010       ;CLEAR BIT #7 OF THE KEYBOARD
                  RTS

KEYIN, when called, waits until a key is pressed and then returns
with the ASCII code of the key pressed in the accumulator.  The
accumulator is stored into location $C010 to clear bit seven of the
keyboard for reasons previously mentioned.
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     Sometimes, it is useful to access the keyboard just to see
if a key has been pressed.  The BIT instruction comes in very
handy here.  By BIT'ing location $C000, the N flag will be set if a
valid key has been pressed.  The BMI/BPL instructions may then
be used to test to see if a key has been pressed.  Another inter-
esting subroutine which is useful on occassion is "KEYPRS."
KEYPRS returns the value TRUE if a key has been pressed, and
it returns the value FALSE if a key has not been pressed.  It is
coded in the following obscure fashion:

          ; FUNCTION KEYPRS.  RETURNS TRUE IF A KEY HAS BEEN
          ; PRESSED, FALSE OTHERWISE. THIS VALUE IS RETURNED



          ; IN THE ACCUMULATOR.
          ;
          ;
          KEYPRS:
                  LDA $C000
                  ROL             ;SHIFT SIGN BIT (#7) INTO
                  ROL             ;THE LO. BIT OF THE ACC.
                  AND #$1         ;MASK OUT ALL BUT BIT #0.
                  RTS

In this routine, bit seven is shifted into the carry and then back
into bit zero of the accumulator.  The accumulator is then AND'ed
with $1 so that only bit zero is left in the accumulator.  If a key has
been pressed, the result of the AND #$1 is one.  If a key has not
been pressed, the result of the AND #$1 is zero.

     Location $C020 is the cassette output toggle.  Normally this
output is used as an interface to the audio cassette mass storage
unit connected to diskless Apples.  This output can, however, be
connected to the high-level input of any stereo or sound system,
and you can use the cassette output toggle in the same manner
as you would the built-in Apple speaker.  Location $C030 is the
Apple speaker.  Since the cassette output and the Apple built-in
speaker are treated in a similar manner, the discussion which
follows will apply to both.

     Sound is generated by causing the Apple speaker to move
outward and then back inward.  Each time the speaker goes in
and out, one cycle is produced.  Humans can hear sound from
approximately 20 cycles per second (also called, "hertz" in the
engineering field) to about 20,000 cycles per second.  Theoreti-
cally, if you were to set up a time delay loop that caused the
speaker to move outward and then back inward at some rate
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between 20 Hz (Hz is an abbreviation for Hertz) and 20,000 Hz
(or 20KHz), you should be able to produce an audible tone.
Unfortunately, since the 2-inch speaker supplied with the APPLE
II computer is not exactly a high fidelity unit, the theoretical max-
imum is unobtainable.  Typically, tones in the range 60 Hz to about
10,000 Hz can be reproduced satisfactorily on the built-in 2-inch
speaker.  It should be noted that, if you connect your cassette
output jack to a good stereo system, this problem is alleviated.
One last thing.  To cause the speaker (or cassette output) to toggle
between the outward and the inward position, simply use a load
instruction to access location $C030 or location $C020 (for the
cassette output).  The load instruction can be LDA, LDX, LDY, BIT,
ADC, AND, CMP, CPX, CPY, or ORA.  Store instructions abso-
lutely will not work.  This is due to the way in which the 6502 writes
data to a memory location.  First, while writing to a memory loca-
tion, the 6502 READS the memory location, then it writes to it.
These two operations occur about 92 nanoseconds apart.  If you
try to store to the speaker or cassette outputs, the following will



happen.  During the write operation the 6502 will read the memory
location.  This causes the speaker or cassette output to toggle
outward (for instance).  92 nanoseconds later the 6502 writes to
the same memory location accessing it again.  This causes the
speaker or cassette output to toggle back to the position it was
in before the store type instruction was executed.  Even the finest
stereo gear in the world (and especially not the "massive" 2-inch
speaker provided with the APPLE II computer) can respond to a
pulse 92 nanoseconds wide.  As a result, absolutely nothing will
happen.  Long before the speaker ever gets a chance to move
outward, the 6502 tells it to move back inward.  As a result, the
speaker does not move at all and no sound is produced.

     Location $C040 accesses the utility strobe on the game I/O
connector.  Loading from this location causes a single pulse on
pin 5 of the game I/O connector.  Storing to this address causes
two pulses to be generated (see the discussion above).  Unfor-
tunately, the discussion of hardware interfacing is beyond the
scope of this book, and since the use the $C040 strobe requires
some hardware interfacing, an in-depth description of the $C040
strobe is not possible.

     Locations $C050 to $C057 are used to switch among the
various display modes.  Location $C050, when accessed, sets the
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graphics mode.  Location $0051 does just the inverse, it sets the
text mode.  The text mode is available in two forms: primary page
and secondary page text.  The primary text page resides in mem-
ory from location $400 through location $7FF.  The secondary text
page resides in memory from location $800 through location
$BFF.  Location $C052 sets the no mix (or full graphics) mode.
Accessing this location produces visible results only if the APPLE
II computer is currently in the graphics mode.  In the text mode,
accessing location $C052 produces no visible effect.  Location
$C053 is used to set the mixed graphics mode.  In this mode, four
lines of text are displayed at the bottom of the screen.  Obviously,
this mode is valid only when graphics are in effect.  Location
$C054 selects the primary display page.  For the text page and
LORES graphics, the memory area which will be utilized is $400
thru $7FF.  For HIRES graphics, locations $2000 thru $4000 will
be used.  Accessing location $C055 selects the secondary display
page.  This is $800 thru $BFF for text and LORES graphics, $4000
through $7FFF for HIRES graphics.  Accessing location $C056
sets up the APPLE II computer for LORES GRAPHICS.  The
graphics mode must also be set for this to take effect.  Accessing
location $C057 sets up the APPLE II computer HIRES graphics.
Once again, the graphics mode must be set (location $C050)
before HIRES graphics will be displayed.

     Locations $C058 through $C05F are used to control the
annunciator outputs.  These are TTL outputs and will require buff-
ers if they are to be used to drive current requiring devices such
as L.E.D.'s.  Annunciator zero (AN0) is set to the off position by



accessing location $C058.  AN0 is set to the on position by acces-
siog location $C059.  AN1 is set to the off position by accessing
location $C051 and is set to the on position by accessing location
$C05B.  AN2 is set to the off position by accessing location $C050
and is set to the on position by accessing location $C05D.  AN3
is turned off by accessing location $C05E and turned on by
accessing location $C05F.  Sadly, there is no way to determine
the status of the annunciator outputs.  Either always be sure of
yourself, or store the current value in some memory location for
future reference.

     Location $C060 is a very interesting input port.  It is the input
bit for the cassette I/O port.  You're probably wondering why the
cassette input port is so useful.  After all, isn't the disk much better
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than the audio cassette for mass storage?  Well the disk is cer-
tainly much better for mass storage (yes, you can sleep easy on
that tonight), but the audio cassette input allows you to perform
something which the disk could never do.  It allows you to input
and digitize speech and other natural sounds.  The following rou-
tine can be considered something of a "teaser."  If you connect a
crystal microphone (or other high-output microphones) to the cas-
sette input jack and run the following routine -- lo and behold, what
goes into the microphone comes out of the speaker.  Try it!

          LOOP    LDA $C060       ;TEST CASSETTE INPUT PORT
                  BPL LOOP
                  LDA $C030       ;TOGGLE SPEAKER
          LOOP2   LDA $C060
                  BMI LOOP2
                  LDA $C030
                  JMP LOOP
                  END

Beyond this basic loop it is possible to get the data from the
cassette input, pack it, and store it into successive memory loca-
tions so that it can be saved to disk and output at a later date.
Several experiments in speech synthesis and speech recognition
can be performed without spending an extra nickel for additional
hardware (except, of course, for a cheap microphone to plug into
the back of the APPLE II computer).

     Locations $C061, $C062, and $C063 are used to detect the
pushbutton inputs (PB1 =$C061, PB2=$C062, PB3=$C063).
If a pushbutton is pressed then bit seven of its corresponding
location is set (i.e. "1").  If the pushbutton is not pressed then bit
seven will be reset (i.e. "0").  The following code tests the push-
buttons and beeps the speaker (by printing the bell character) if
the pushbutton is pressed.

          LOOP    BIT PB1



                  BPL LOOP
                  LDA #BELL       ;LOAD BELL CHARACTER INTO ACC
                  JSR COUT1       ;OUTPUT BELL CHARACTER
                  JMP LOOP
          PB1     EQU $C061
          COUT1   EQU $FDF0
          BELL    EQU $87
                  END
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     Locations $C064 through $C067 correspond to the game
controller (analog) inputs.  The analog inputs work in the following
manner.  First, you must initialize the hardware by accessing
location $C070.  This causes a little timing device to start running.
This timing device (a 558 timer, in case you're wondering) is
connected to bit seven of location $C064, $C065, $C066, or
$C067 (depending upon which game controller you're interested
in).  While this 558 timer is running, bit seven of the corresponding
controller location is set, so that by forming a little counter loop
it is possible to determine the setting of the desired analog input.
The following routine (straight out of the Apple monitor) reads
game paddle #x where x is passed in the X-register.  Upon return,
the Y-register contains a value in the range $0 to $FF depending
upon the setting of the game controller.

          PREAD   LDA $C070       ;TRIGGER PADDLES
                  LDY #$0         ;INIT COUNT
                  NOP             ;DELAY REQUIRED FOR HARDWARE
                  NOP             ;PURPOSES
          PREAD2  LDA $C064,X     ;TEST DESIRED PADDLE
                  BPL RTS2D
                  INY
                  BNE PREAD2      ;QUIT IF > $FF
                  DEY             ;SET TO $FF
          RTS2D   RTS
                  END

There are two things to keep in mind when using the analog
inputs.  First, you cannot read two paddle inputs immediately after
one another.  Due to the hardware used, you must delay a little
while before reading another input.  The loop:

                  LDX #$0
          LOOP    DEX
                  BNE LOOP

works just fine.

     The second thing to keep in mind is that reading the paddle
inputs does take some time.  You should be aware of this if you
are writing time critical code and are using the paddles.



     Apple's built-in I/O is very useful for games and measure-
ment purposes.  Many programs, games or not, can be improved
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greatly by accepting input from the paddles or input switches.
Programs such as "SLOW LIST," "CURSOR EDITING," are all
enhanced by the use of the game controller inputs.
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                           CHAPTER 16

                       AN INTRODUCTION TO
                            SWEET-16

SWEET-16

     Deep inside the Integer BASIC ROMs lives a mysterious
program known as "Sweet-16."  Sweet-16 is a meta processor
which is implemented interpreter style.  Its virtues include a bunch
of 16-bit instructions, most of which are implemented with one-
byte opcodes.  Since performing 16-bit operations with normal
6502 code requires several two- and three-byte instructions,
Sweet-16 code is very compact.  In this chapter we will explore
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the possibilities of the Sweet-16 interpreter, its advantages and
disadvantages.

     First, just exactly what is a "meta processor" and what does
an interpreted implementation imply?  A meta processor is simply
a fantasy machine, one which does not exist as a physical
machine, but simply as a design tool.  A meta processor has the
capability of taking on almost any instruction set.  Since there are
only a few pieces of hareware actually capable of performing this
task (and the 6502 is not such a piece of hardware), a meta
processor implementation must be handled in a somewhat dif-
ferent way on the 6502.  An interpreter must be written, with a
single subroutine for each instruction code to be implemented.  A
small control program picks up the Sweet-16 opcodes from mem-
ory, decodes the instruction, and then passes control to the
appropriate subroutine.  Once the desired subroutine is finished
execution, the code control is returned to the control program
which accesses the n byte of Sweet-16 code and continues the
process.

     So far everything sounds wonderful.  But what are the dis-



advantages of Sweet-16 code?  First, and probably most impor-
tant, Sweet-16 programs run much slower than the same algo-
rithm coded entirely in 6502 assembly language, five to seven
times slower in fact.  Another mark against Sweet-16 code is that
the Sweet-16 interpreter exists only in the Integer BASIC ROMs
(which is no big deal if you have an APPLE II computer, a lan-
guage card, or an Integer BASIC card), but, if you only have an
APPLE II Plus computer without Integer BASIC, or you wish to
sell your programs to others who may not have the Integer BASIC
language, you will either have to forget about Sweet-16 altogether
or inject the code for the Sweet-16 interpreter into your program.
Since the Sweet-16 interpreter is about 400 bytes long, you would
have to write more than one kilobyte of code in Sweet-16 before
it would pay to include the interpreter within your programs.
Because of this problem, Sweet-16 should only be used where
the Integer BASIC language is available.  The interpreter is
already provided there for you (free-of-charge even!).

     What does Sweet-16 look like?  Sweet-16 is a 16-bit com-
puter complete with sixteen 16-bit registers.  These registers are
used to hold addresses and intermediate values for use in
address calculations.  These registers are numbered R0 to RF
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(hex) for reference purposes.  Several of these registers are spe-
cial purpose.  They include R0, RC, RE, and RF.  R0 is the Sweet-
16 accumulator.  Sweet-16 can only perform the addition, sub-
traction, and comparison operations, and these must all be routed
through the Sweet-16 accumulator.  RC is the Sweet-16 stack
pointer used when Sweet-16 subroutines are called.  RE is used
to hold the Sweet-16 processor status data and RF is the Sweet-
16 program counter.  Except for these four registers which are for
special use only, all the Sweet-16 registers are general purpose
address registers.

     Before discussing how the Sweet-16 instruction set is used,
entering and exiting the Sweet-16 mode must be covered.  A pro-
gram toggles back and forth between Sweet-16 code and 6502
code in much the same manner as you would toggle between the
decimal mode and binary mode.  A program enters the Sweet-16
mode with a JSR SW16 instruction.  SW16 is located at address
$F689.  Once this is accomplished, all further code is assumed to
be Sweet-16 code.  To terminate the Sweet-16 mode of operation,
the Sweet-16 instruction "RTN" (for ReTurN to 6502 mode) must
be execute immediately after the RTN instruction, valid 6502
instructions are expected.  A quick excursion into Sweet-16 with
an immediate return to 6502 mode would consist of the code
sequence:

          SW16    EQU $F689
          ;
                  JSR SW16
                  RTN
          ;



                  RTS
                  END

If this short program were executed, the JSR SW16 instruction
would cause a transfer to the Sweet-16 mode to take place.  All
further instructions are assumed to be Sweet-16 instructions.  The
next instruction is the Sweet-16 RTN instruction which causes a
transfer back to the 6502 mode.  All instructions following the RTN
instruction are assumed to be valid 6502 instructions.  The next
instruction is the familar 6502 RTS instruction which causes a
return to the Apple monitor.  This simple sequence of instructions,
although trivial and producing no noticeable results, demon-
strates how to enter and terminate the Sweet-16 mode.  Normally,
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several Sweet-16 instructions would be sandwiched between the
JSR SW16 and the RTN instructions.

     The Sweet-16 processor status word holds several condi-
tions.  A carry flag, zero flag, and negative flag are implemented.
A test for minus one ($FFFF) is also implemented.

     The Sweet-16 SET instruction allows the programmer to set
the contents of any Sweet-16 register to a desired value.  Its 6502
equivalent is the load immediate instruction.  The SET instruction
has the syntax:

                  SET Rn,<16-BIT VALUE>

The 16-bit value can be any valid LISA address expression.  'n'
is simply a hex value in the range $0-$F and denotes which reg-
ister is to be loaded with the declared value.  Examples of the SET
instruction:

          LABEL   SET R0 LABEL    ;LOADS THE CURRENT ADDRESS
                                  ;INTO R0
                  SET R1,$25      ;LOADS $0025 INTO R1
                  SET R5,$800     ;LOADS $0800 INTO R5

The SET instruction is three bytes long: one byte for the SET
opcode and two bytes for the 16-bit value that is to be loaded into
the specified register.  SET RF,<VALUE> is a very special case.
Since RF is the Sweet-16 program counter, loading immediate
data into register $F is the same as performing an absolute jump
instruction.  RC and RE must be treated carefully as well since
they are used to hold the Sweet-16 stack pointer and status reg-
ister.  If zero is loaded into the specified register, the Sweet-16
zero flag is set; otherwise it is cleared.  If minus one ($FFFF) is
loaded into the specified Sweet-16 register, the minus one flag is
set; otherwise the minus one flag is cleared.  The Sweet-16 carry
flag is always cleared after a SET instruction is executed.



     The next instruction in the Sweet-16 instruction set is the
load register or LDR instruction.  This instruction loads the Sweet-
16 accumulator (R0) from the register specified in the operand
field.  The term 'load' is somewhat misleading as this instruction
really a register transfer instruction not unlike the 6502 TYA and
TXA instructions.  The LDR instruction has the syntax:

                  LDR Rn
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Where n is the Sweet-16 register number in the range $0-$F Note
that LDR R0 is perfectly allowable and performs the operation of
making a copy of R0 into R0, a somewhat useless instruction
(except, possibly, for comparison purposes) but nevertheless
valid.  The LDR instruction is a one-byte instruction and will cause
16 bits to be transferred to the Sweet-16 accumumator.  If zero is
transferred between the registers, then the Sweet-16 zero flag is
set; otherwise the zero flag is cleared.  If minus one is transferred
to the accumulator, the minus one flag is set; otherwise the minus
one flag is cleared.  The negative flag is set according to the data
transferred to the Sweet-16 accumulator.  The negative flag
always reflects the contents of the sixteenth bit, not the eighth bit
as in the 6502 status register.  The Sweet-16 carry flag is always
cleared.

     STO (store register) is the inverse operation to LDR.  STO
stores the contents of the Sweet-16 accumulator into the specified
Sweet-16 register.  This is similar to the 6502 instructions TAY &
TAX.  The Sweet-16 status bits are affected in the same manner
as with the LDR instruction, and the STO instruction is one byte
long, just like the LDR instruction.

     You will note that there is no direct way to transfer the data
from one register to another without going through the Sweet-16
accumulator.  For example, to transfer the data from R5 to R6 you
must execute the code sequence:

                  LDR R5
                  STO R6

As you can see, the Sweet-16 accumulator is destroyed during
such transfers.  For this very reason, the Sweet-16 accumulator
should not be used to hold important data.  It should be used
totally as a transient register used only for calculations.

     The Sweet-16 interpreter allows two types of arithmetic.  16-
bit addition and subtraction.  Addition is performed with the Sweet-
16 ADD instruction.  It takes a single register as its operand.  This
register is added to the Sweet-16 accumulator and the result is
left in the accumulator.  The syntax for the ADD instruction is:

                  ADD Rn



Where n is a hex value in the range $0-$F.  Note that the instruc-
tion 'ADD R0' is very useful; it doubles the value in the Sweet-16

                              16-5

*****************************************************************

accumulator.  If there is a carry out of the 17th bit during the
addition, the carry is noted in the Sweet-16 carry flag.  An add
with carry instruction is not possible, so the carry flag is useful
only for detecting overflow.  All the other condition codes are set
according to the outcome of the addition operation.  The Sweet-
16 ADD instruction is a one-byte instruction.

     Subtraction is performed using the Sweet-16 SUB instruc-
tion.  The register specified in the operand field is subtracted from
the accumulator with the results being left in the accumulator.  The
SUB instruction can be used as a compare instruction in a manner
similar to the SBC instruction on the 6502.  If the value in the
accumulator (prior to the SUB instruction) is greater than or equal
to the value in the specified register, the carry flag will be set after
the SUB instruction occurs.  If the value in the accumulator is less
than the value in the specified register, the carry flag will be clear
after the SUB instruction is executed.  If the two registers are
equal, then the zero flag is set; if they are not equal, the zero flag
is reset.  Note that the SUB R0 instruction can be used as a one-
byte clear accumulator instruction.  It performs the same function
as SET R0,0 yet requires only one third the memory.

     Comparisons can also be performed using the CPR (com-
pare register) instruction.  CPR performs the same function as the
SUB instruction, except that the results are placed in RD instead
of the ACC.  Any tests following the CPR instruction will test the
value in RD instead of the accumulator.  Register RD can be
thought of as an auxiliary processor status register.  As such, its
use should also be avoided.

     Conditions in the Sweet-16 processor status register are
tested in a manner very similar to the 6502 microprocessor.  That
is, branch instructions are used to test conditions.  Branches on
the Sweet-16 processor use relative addressing, just like their
6502 counterparts.  The branch instructions include: BRA (branch
always, an unconditional branch), BNC (branch if no carry), BIC
(branch if carry), BIP (branch if positive), BIM (branch if minus),
BIZ (branch if zero or branch if equal), BNZ (branch if not zero or
not equal), BM1 (branch if minus one), BNM (branch if not minus
one), and BSB (branch to Sweet-16 subrouuine).  All Sweet-16
branches are two bytes long.

     The branch to subroutine (BSB) instruction really needs
some additional explanation.  When a Sweet-16 subroutine is
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called, the return address is pushed onto the Sweet-16 return
address stack.  The stack pointer is RC.  Wherever RC happens
to be pointing when the BSB instruction is executed, the return
address will be stored.  If you have not initialized the Sweet-16
stack pointer (RC), it could be pointing anywhere in memory,
which means that a BSB instruction could potentially wipe out
valuable program and data storage.

     The cure for these ailments is always to initialize the Sweet-
16 stack pointer prior to using Sweet-16 subroutines.  This is
accomplished quite easily by using the SET instruction and load-
ing RC with an intial stack pointer value (this is similar to using
the 6502 sequence: LDX #VALUE, TXS).  Unlike the 6502 stack
pointer which is an 8-bit register that wraps around, the Sweet-
16 stack pointer is a 16-bit register which can take on any 16-bit
va!ue.  This means that if you're not very careful, it is possible to
have the stack go wild and wipe out everything in memory.  Typi-
cally, you will not have to even use Sweet-16 subroutines, but
should the need arise, be very careful.

     To return from a Sweet-16 subroutine you must use the RSB
(return from subroutine) instruction.  The RSB instruction is a sin-
gle byte instruction.

     Register increments and decrements are performed by the
INR and DCR instructions.  INR increments the register specified
in the operand field by one; DCR decrements the specified reg-
ister by one.  All branch conditions are set to reflect the final results
in the specified register.  The INR and DCR instructions are both
one byte long.

     So far, only a discussion of the arithmetic and conditional
testing capabilities of the Sweet-16 processor have been pre-
sented.  Although these instructions are useful, they do not really
present anything new that was not already available in the 6502
microprocessor instruction set.  Sweet-16's real power comes
from its pointer and data movement capabilities.  Several powerful
load and store instructions are available which allow the program-
mer to perform certain actions in one byte that would take eight
to sixteen bytes on the 6502.  These instructions revolve around
the idea of loading the Sweet-16 accumulator indirectly through
a specified register.

     The first instruction in this family of instructions is the load
indirect instruction.  It uses the syntax:
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                  LDR @Rn

Note that the mnemonic is the same as the normal load register
instruction, but that the '@' character appears in the operand field
immediately before the register specifier.  This instruction is an 8-
bit load instruction.  It loads the low-order bits of the Sweet-16
accumulator from the memory location pointed to by the specified



register.  The high-order byte of the Sweet-16 accumulator is cleared.
After the accumulator is loaded with the data from the address
pointed to by Rn, Rn is incremented by one.  This causes the
pointer register to point to the next available byte immediately
after the LDR instruction is executed.  This type of instruction
(where the register is automatically incremented for you) is called
an "auto-increment" instruction.  The LDR indirect instruction is
very useful for memory movements and searches.  Consider the
following code:

          START   JSR SW16
                  SET R1,$8000
                  SET R3,$FF
          LOOP    LDR @Rn
                  CPR R3          ;CHECK FOR $FF
                  BNZ LOOP        ;LOOP IF NOT FOUND
                  RTN             ;QUIT SWEET-16, DATA FOUND
                                  ;ADDRESS LEFT IN R1

This routine starts at location $8000 and searches diligently until
a $FF is encountered.

     To load two bytes into the accumulator one would use the
LDD (load double indirect) instruction.  It uses the syntax:

                  LDD @Rn

It loads the low order accumulator byte from the location pointed
at by Rn; then Rn is incremented by one.  After the increment is
performed, the high order accumulator byte is loaded indirectly
through the new value in Rn.  Once this is accomplished, Rn is
again incremented.  The net result is that the Sweet-16 accumu-
lator is loaded indirectly from the locations pointed at by Rn and
Rn+1.  Afterwards Rn is incremented twice.  The branch condi-
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tions will reflect the final accumulator contents and the carry will
be cleared.

     Data can also be stored indirectly through one of the reg-
isters.  The store indirect instruction is the inverse of the load
indirect instruction.  It has the syntax:

                  STO @Rn

This instruction stores the contents of the low-order byte of the
Sweet-16 accumulator at the location in memory pointed to by
the Rn register.  After the store operation is performed, Rn is



incremented by one.  The branch conditions reflect the Sweet-16
accumulator contents.  The store indirect instruction can be used
rather well with the load indirect instruction for memory movement
routines.  The following routine moves data from $8000 through
$9000 to the area $3000 through $4000:

          START   JSR SW16
          MOVE    SET R1,$8000    ;SET UP POINTER REG #1
                  SET R2,$9000    ;SET UP FINAL VALUE REG
                  SET R3,$3000    ;SET UP POINTER REG #2
          ;
          LOOP    LDR @R1         ;GET DATA @R1

                  STO @R3         ;STORE @R3

                  LDR R1
                  CPR R2          ;DONE YET?
                  BNC LOOP        ;IF NO CARRY (I.E. LESS THAN)
                  BIZ LOOP        ;IF EQUAM
                  RTN
                  BRK
                  END

Compare this to the amount of code required to perform the same
operation in 6502 machine code!

     To store both halves of the Sweet-16 accumulator into mem-
ory, you must use the STD (store double indirect) instruction.  This
instruction stores the low-order byte of the Sweet-16 accumulator
at the location pointed to by Rn.  Rn is then incremented by one,
and the high-order byte of the accumulator is then stored at the
new location pointed to by Rn, after which Rn is again incre-
mented by one.
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     The last three Sweet-16 instructions are POP (pop indirect),
STP (store pop indirect), and PPD (pop double indirect).  POP
loads the low-order accumulator byte from the location pointed
to by Rn AFTER Rn is decremented by one.  POP has the syntax:

                  POP @Rn

User-defined stacks may be implemented using the POP Rn and
STO Rn instructions (where Rn is the stack pointer).  POP is also
useful in implementing the "move right" routine presented else-
where in this book.

     STP is the inverse of POP.  This operation causes the low-
order byte of the Sweet-16 accumulator to be stored at the
address pointed to by Rn after Rn is decremented by one.  Single
byte user-defined stacks may also be implemented using the STP



Rn and LDR Rn instructions (where Rn is the user-defined stack
pointer).

     PPD (pop double indirect) is the 2-byte equivalent of POP
PPD performs the following action: Rn is decremented by one
and the high-order accumulator byte is loaded from the location
pointed to by Rn.  Rn is then again decremented by one and the
low-order accumulator byte is loaded from the address pointed
to by Rn.  PPD has the syntax:

                  PPD @Rn

Double byte stacks may be implemented using the PPD and STD
instructions.  The POP, STP, and PPD instructions are all one byte
long.  The carry is always cleared after one of these operations is
performed.  POP always results in a positive value which is never
minus one.  PPD and STP affect the status bits depending upon
the final accumulator contents.

SWEET-16 HARDWARE REQUIREMENTS.

     All of the Sweet-16 registers are implemented as zero page
memory locations (in fact, the first 32 bytes of zero page are used
for the Sweet-16 registers).  For this reason, care must be exer-
cised when using zero page memory in a program in which
Sweet-16 is also used.  R0 corresponds to memory locations $0
and $1; R1 corresponds to memory locations $2 and $3; and so
on for the other registers.  Since they are implemented in zero
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page memory, it is a simple matter for 6502 programs to pass
data to a Sweet-16 routine simply by shoving data into the respec-
tive registers.  Likewise, Sweet-16 can return data to the 6502
program in the Sweet-16 registers.  A Sweet-16 call is transparent
to the 6502 program.  All registers, including the processor status
register, are preserved and then restored before returning to the
6502 mode.  Another important fact to remember is that the 6502
must be in the binary (as opposed to decimal) mode before enter-
ing the Sweet-16 mode.  Strange things happen if this is not the
case.  Obviously, another book the size of this one could be written
on programming in Sweet-16.  The purpose of this chapter is only
to acquaint the user with the Sweet-16 interpreter.  It is left to the
reader to discover its myriad of uses.
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                           CHAPTER 17

                         DEBUGGING 6502
                        MACHINE LANGUAGE
                            PROGRAMS.



GENERAL.

     Except for the most trivial of programs, very few programs
run correctly the first time.  Fortunately, LISA is an interactive
assembler, so the amount of time required to correct syntax errors
is reduced tremendously.  Correcting the remaining program/syn-
tax/addressing mode errors is usually quite trivial.  That is, if you
run across a duplicate label, or discover that you have used an
absolute label where a zero page variable is required, the cor-
rection is usually quite straight forward and easy to accomplish.
The real problem, as with any programming language, occurs
when logical errors creep into a program.  Common examples of
logical errors might include forgetting to reset the decimal flag
after a series of decimal operations, executing data as a program,
wiping out a program with data, and forgetting to save the reg-
isters upon entering a subroutine.  Unlike BASIC the 6502 is not
nice enough to stop and print an offending error message.  It goes
along on its merry way producing incorrect results, destroying the
program in memory and possibly even data in memory and on
diskette.

     Fortunately, the APPLE II computer is blessed with some
very good assembly language debugging tools.  Foremost is the
Apple monitor.  You've probably never even thought about the
monitor as a debugging tool, but it is a very, very good one.
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Packed into only two kilobytes of ROM is a disassembler, a soft-
ware emulator, register and memory display and modify routines,
memory move and verify commands, and a whole host of addi-
tional commands.  If you have an APPLE II computer with Integer
BASIC you also get a mini-assembler which allows you to create
"quickie" programs and to patch existing ones with ease.  In
addition to the Apple monitor, there are several LISA support
packages available from On-Line Systems which assist in the
debugging of 6502 machine language programs.  Their use will
be described later.

GO COMMAND (G).

     The Apple monitor GO command ('G') probably does not
seem like a debugging command.  After all, the go command is
used to start a program executing and that's about all its good
for, right?  WRONG!  The GO command acts just like a JSR state-
ment within a program.  It causes a jump to a subroutine at the
address specified by the user.  For example, 800G causes a jump
to the subroutine at location $800 in memory.  Just like a JSR
statement, the return address is pushed onto the stack and a
jump is made to the specified address.  Wait a second!  What return
address is pushed onto the stack?  The return address back to
the Apple monitor, of course.  This means that if you execute a
program terminated with a RTS instruction, your program will
return to the Apple monitor command level when the program



terminates.  Ok, that's probably old news too.  You've been sticking
RTS instructions at the end of your programs for ages now and
you're quite aware of the fact that such programs return back to
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the monitor.  Of what use is this feature when debugging pro-
grams?

     If you stick a RTS instruction at the end of your program,
then your program can be called as a subroutine from an outside
program, so that, in reality, what your program consists of is one
large subroutine.  Since you can call this large subroutine from
the Apple monitor and execute it, what is there to stop you from
calling smaller subroutines within your program using the GO
command?  Nothing at all.  And that is how the GO command
becomes a very powerful debugging command: it allows you to
test individual subroutines under isolated conditions.  For exam-
ple, suppose you have a main program that calls subroutines at
locations $980, $AC0, and $1000.  When you run the program the
machine disappears on you and nothing happens.  You can call
the three subroutines using the 900G, AC0G, and 1000G com-
mands to see which subroutine is ending up in some sort of loop.
If the subroutine returns control to the monitor, chances are it
works fine.  If it does not come back, you know where part of your
troubles may lie.  Note that this technique assumes that absolutely
no data is passed to the subroutine.  If your subroutines require
data (and most do), read on...

INITIALIZING REGISTERS AND MEMORY.

     Except for the simplest of subroutines, most routines require
data of some sort.  Routines which require small amounts of data
usually pass this data in one of the 6502 registers.  Routines
requiring more data can pass the data in a known location, on the
stack, or can pass a pointer to the data.  No matter how the data
is passed, this data must be correctly set up before the subroutine
is called, if the subroutine is expected to perform correctly.  If you
call a subroutine requiring data using the monitor GO command,
chances are problems will develop unless you have taken the
time to set up the parameters correctly.

     The simplest method for passing parameters consists of
passing the data in one or more of the 6502 registers.  For exam-
ple, the video output routine at location $FDF0 expects the char-
acter to be printed on the screen to be passed to the routine in
the 6502 accumulator.  How can you specify from the monitor what
data is passed to a routine in the registers when the GO command
is issued?
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     The control-E command in the Apple monitor allows you to
display the contents of the 6502 registers.  If you type control-E
followed by return the APPLE II computer will display something
like:

                  A=0A X=FF Y=D8 P=B0 S=G8

This tells you that when the GO command is issued, the 6502
registers will contain their respective displayed value.  Great, so
we know how to find out what data will be passed to a routine.
But how can we change it?  As it turns out, whenever you type
control-E followed by return the monitor is set up so that if you
type a colon (:) followed by some byte data, you can modify the
registers.

     EXAMPLE:

          *control-E

          A=0A X=FF Y=D8 P=B0 S=F8

          *:C1

          *control-E

          A=C1 X=FF Y=D8 P=B0 S=F8

You can easily specify the data, which is to be passed to the
program in the accumulator, by simply typing a colon followed by
the data you wish to store in the accumulator.

     If you wish to change the X- and Y-registers as well, simply
type three successive bytes separated by spaces.  The first byte
will be placed in the accumulator, the second byte will be placed
in the X-register, and the third byte will be placed in the Y-register.
If you wish to change only one register, the data contained in
previous registers must be retyped into the monitor.

     EXAMPLE:

          *control-E

          A=C1 X=FF Y=D8 P=B0 S=F8
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          *:C1 FF D8 B0 FF



          *control-E

          A=C1 X=FF Y=D8 P=B0 S=FF

     To use this as a feature when debugging your programs
consider once again the Apple monitor video output routine at
location $FDF0.  It requires that data be passed to it in the 6502
accumulator.  If we had just written the video output routine and
we wanted to check it out without running the whole Apple mon-
itor, we could accomplish this by using the following steps:

          *control-E

          A=0A X=FF Y=D8 P=B0 S=F8

          *:C1

          *FDF0G
          A
          *control-E

          A=C1 X=FF Y=D8 P=B0 S=F8

          *:C2

          *FDF0G
          B
          *control-E   etc.

so it is possible to "spoon feed" subroutines which require data
to be passed to them through one of the 6502 registers.

     If data must be passed to a subroutine in one of the memory
locations in the 6502 address space, the setup is only a little
different than if the data is passed in a 6502 register.  Rather than
typing control-E <return> and then a colon followed by the reg-
ister data, all you need type is the address of the parameter
followed by a colon and the data you wish placed in that memory
location.
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     EXAMPLE:

          *F0:00 80 C0

          *800G



This example assumes that there is some subroutine at location
$800 which uses the data in locations $F0, $F1, and $F2.  If you
have a subroutine that needs data passed to it in memory, you
can handle its testing in a similar manner.

     If your routine requires special parameter handling (such as
the PRINT routine presented in an earlier chapter, where the data
is passed as part of the code stream), it is usually easier to write
a small driver routine to set up the parameters and call the routine
for you.  For example, to write a short driver routine for the PRINT
subroutine (assuming that the PRINT routine is located at $900),
you would pick a spot in memory that is not being used and enter
the following:

         *1000:20 00 09 C1 C2 C3 00 60

         *10000
         ABC
         *

If you've been learning your machine code all along (or if you're
like me, you cheat and look up the opcodes on a 6502 reference
card), you'll notice that the above sequence represents the code:

                  JSR $900
                  ASC "ABC"
                  HEX 00
                  RTS

By typing 1000G and executing this short routine, you can test
the PRINT routine to see if it works properly.  For additional infor-
mation on modifying memory locations, consult Chapter 3 of the
new Apple Reference Guide (the 'White' book).

MODIFYING INSTRUCTION CODE (PATCHING).

     Before LISA came along, most assemblers were quite slow
and required a considerable amount of setup in order to assemble
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code.  As a result, the user found it easier to replace instruction
code by stuffing hexadecimal data into memory rather than reas-
sembling the program with the proper modifications.  This required
considerable knowledge on the user's part (since he had to mem-
orize a good number of the 6502 opcodes); and he had to exer-
cise the utmost care to prevent his patches from destroying valid
instruction code.  LISA is so fast and easy to use, however, that
extensive patching should never be attempted.  It is almost always
easier to reenter LISA, correct the problem, reassemble the pro-
gram and try again.



     In some instances a manual patch may still be faster.  Exam-
ples include: replacing an implied addressing mode instruction
with another implied addressing mode instruction (i.e., you meant
DEX instead of DEY), replacing an n-byte instruction sequence
with NOP's (deleting the existing instruction), and installing BRK's
within your program.  These last two examples are especially
important and will be considered in more detail.

     The NOP's main use in the 6502 instruction set lies in timing
delays and its ability to replace existing instructions without alter-
ing any registers or memory locations.  The opcode for the NOP
instruction is $EA; memorize it!  When debugging programs, you
will often need to replace an instruction with one or more NOP's.
The only easy way to enter a NOP into your instruction stream is
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to use the monitor memory modify command (<addr>:<data>)
to replace the instruction at the specified address.  For example,
suppose you have an extra PLA instruction at location $890 in
your code and you wish to delete it.  You could reenter LISA and
delete this instruction, but that operation would take about one
minute before you would be able to test the results of removing
the PLA instruction.  A better approach, which gives you the ability
to immediately test the results of removing the PLA, is to replace
it with a NOP instruction.  This is accomplished by typing '809:EA'
from the Apple monitor command level.  After that, rerun your
program and see if it works.  If you replace a two- or three-byte
instruction make sure that the entire instruction is replaced, not
just the opcode.  Also, don't forget to go back and modify the
source of your program after you are through testing it.

     As you may recall, the 6502 BRK instruction stops the pro-
gram and prints out the contents of the 6502 registers.  This fea-
ture will prove to be extremely useful for debugging programs.  By
replacing an instruction within your program with the BRK instruc-
tion, you can stop the program before (or after) some critical
section of code and examine the registers or some specific mem-
ory locations.  The opcode for the BRK instruction is easy to
remember: it's zero.

     Using the BRK instruction to stop program flow at some
point is known as 'setting a breakpoint.' Breakpoints are useful
when you need to test a section of code that is not a subroutine.
A breakpoint lets you execute a program up to a certain point and
then stop program execution.  At this point the registers and any
particular memory location may be inspected.  The single draw-
back to the BRK instruction is that it is very difficult to resume
program execution at the point the BRK instruction was encoun-
tered.  The reasons for this are: (1) normally you have replaced
an instruction with the BRK instruction, and (2) the stack is
messed up when the monitor is entered.  While a program could
be written to allow breakpoint management, it would not work on
all APPLE II computers (in particular it would not work on APPLE



II computers without the Autostart ROM), and such a program is
beyond the scope of this book.

     Lazer Systems (the folks who brought you LISA) have
another program to assist you in debugging your 6502 programs.
This program is called "TRACE/65."  It is an interactive debugging
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tool for the APPLE II computer similar to debuggers available for
CP/M systems.  This program allows the machine language pro-
grammer the ability to single step through a program displaying
all the registers.  TRACE/65 also lets the programmer set non-
destructive breakpoints, and gives the user the ability to display
the instructions with symbolic display of memory locations on the
video screen as they are being executed.  In all, TRACE/65 can
help cut debugging time in half.

     To use TRACE/65 you must assemble a program, using
LISA, in the $800 to $47FF area of memory.  These are the only
locations allowed for storing the object code by the TRACE/65
program.  Once the code is correctly positioned in memory, BRUN
the TRACE/65 program.  When you are greeted with a ")" prompt,
type T followed by return.  TRACE/65 will prompt you to enter a
starting address.  Enter the starting address of your program.  The
TRACE/65 program will immediately begin executing and dis-
playing your program.  You can stop the rapid display of the
execution of your program by depressing the space bar.  This will
stop the execution of your program until you depress the space
bar again.  This feature gives you the ability to slowly watch the
execution of your program a step at a time.

     TRACE/65 incorporates two modes of operation: the exe-
cution mode and the 'parameter' mode.  The execution mode is
the mode whereby programs are executed and displayed on the
screen.  The parameter mode is the mode in which you set break-
points, toggle the display mode, modify memory locations and
registers, and exit the parameter mode.

     To enter the parameter mode, type "P" from the command
level or stop your program from running (by depressing the space
bar) and type "P."  At this point you will be greeted by a menu
describing the possible options.  If you press "A," you will toggle
the display mode.  The display mode controls the printing of the
traceout.  If the display mode is set, then all instructions executed
will be printed on the Apple CRT screen.  If the display mode is
turned off, this listing will be supressed.  The display off mode will
typically execute a section of code 100 times faster than the dis-
play on mode.  This allows you to quickly skip over sections of
code that do not need debugging (such as loops to zero out
memory) and then turn the listing back on when a section of
questionable code is encountered.  The breakpoints (described
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next) are used to terminate a section of code that is being exe-
cuted in the non-display mode.

     The 'B' option in the parameter menu is breakpoint selection.
A breakpoint is simply a command to the TRACE/65 program to
halt execution whenever an instruction at a certain address is
encountered.  The breakpoint option in the parameter mode lets
you set a breakpoint address.  TRACE/65 provides you with up to
four user-definable breakpoints.  When you press 'B,' TRACE/65
will ask you which breakpoint you wish to set, and then it will
prompt you to enter the breakpoint address.

     The 'C' option lets you return to the executing program (or
TRACE/65 command level) without executing any of the param-
eter mode commands.  This is useful in the event 'P' is accidentally
pressed.

     The 'D' option is used to quit the trace mode.  This option
lets you terminate program interpretation after a desired section
of code is checked out.

     The '$' option lets you enter a monitor command during
program execution.  This could be used to change a memory
location or 6502 register, or possibly to disassemble the next
section of code that is to be executed before actually executing
it.  To change a memory location, simply type '$<loc>:<data>.'
To change a 6502 register, you must modify one of the zero page
locations $DA through $E9.  The registers affected are:

          PC  :$DA, $DB
          ACC :$E5
          XREG:$E6
          YREG:$E7
          PSW :$E8
          SP  :$E9

Incidently, these are the only zero page locations in the range
$D6-$FF you or your program should modify.  Should any of these
memory locations be modified, unpredictable things may happen.

PROGRAM DEBUGGING SESSION.

     Consider the following program:

          START:
                  LDX #$0
          LOOP    LDA MSG,X
                  BEQ QUIT
                  JSR $FDED
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                  DEX
                  BNE LOOP
          ;
          MSG     ASC "THIS IS A TEST"
                  HEX 00
          ;
          QUIT    BRK
                  END

     This program has one very obvious problem, DEX is used in
place of INX.  This program will probably print lots of garbage
instead of the desired message.  To trace this program using
TRACE/65, you would BRUN TRACE from BASIC.  Once you
were into the TRACE/65 program, you would load the program
in using the DOS command "BLOAD PROGRAM."  Before exe-
cuting the program, a breakpoint should be set.  The breakpoint
will be set for location $FDED.  We set a breakpoint here because
we already know that the Apple monitor COUT routine works and
there's no sense in wasting time to debug it.  A breakpoint is set
by typing "P" (to get into the parameter mode) and then "B."  Any
of the four breakpoints may be used, let's select breakpoint #1.
This is accomplished by typing "1."  TRACE/65 will now ask for
a breakpoint address.  Enter FDED.  Once FDED is entered, you
will be returned to the TRACE/65 command level.  Now program
execution may begin.

     To begin the trace mode, type "T."  TRACE/65 will prompt you
for a beginning address.  Once this is entered, the trace mode
begins.  Since a breakpoint was set at location $FDED, the trace
will quickly stop with the message 'BREAK POINT ENCOUN-
TERED AT LOCATION $nnnn.  Notice right below the last instruc-
tion displayed, that the accumulator's contents are displayed.
Currently the accumulator will contain $D4 (T), which is the first
character in our string.  Fine, things are working out okay so far.
To continue execution (without executing the COUT routine), the
parameter mode must be entered (by typing "P").  Now type
$DA:58FF.  This will point the program counter at a RTS instruction
which will cause an immediate return to your program.  Finally,
type "C" to continue the execution of your program.  Another batch
of instructions will be executed, and once again the program will
encounter a breakpoint.  This time, however, there is probably
garbage in the accumulator, and the X-index register will contain
$FF.  By tracing back a few instructions on the screen, you will
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notice that the X-index register was decremented instead of
incremented.  Voila, the problem is solved.

     While this is a very simple example, it demonstrates how
breakpoints are used to skip over certain sections of code.  Break-
points can also be used to allow speedy execution (in the display
off mode) until a questionable section of code is encountered, or
to automatically stop program execution at any point.



     Debugging code is learned mostly through experience.  The
more you do it, the better you get at it.  As the saying goes, prac-
tice makes perfect.

                              17-12

*****************************************************************

                           APPENDIX A

                        APPLE II COMPUTER
                         TABLES, CHARTS,
                           AND GRAPHS

omitted

                        A-1 through A-34

*****************************************************************

                A

Accumulator (A or ACC)                  3-3
AND Function                            9-2
An Easy Method of Outputting
 Integers                               12-6
Appendix A                              A-1
Apple I/O Structure                     15-1
Arithmetic Review                       6-10
Arrays in Assembly Language             8-3
ASCII Character Set                     2-14
Assembly Language Source
 Format                                 4-1

                B

Binary Arithmetic                       2-8
Binary Coded Decimal Arithmetic         6-8
Bit String Operations                   9-4
Bit Strings                             2-3
Branch Instructions (6502)              5-9
Break Flag (B)                          5-6

                C

Character Input                         11-11
Character Output                        11-1
Comparisons                             5-11
Complement Function                     9-2
Condition Code Flags (N, V, Z, C)       5-7

                D

Decimal Flag (D)                        5-6
Declaring Literal Strings               14-5



Division Algorithms                     13-7

                E

Example Program                         5-2
EXECLUSIVE-OR Function                  9-4
Expressions in the Operand Field        4-11

                F

FOR/NEXT Loop Revisited                 5-14

                G

GO Command (G)                          17-2

                H

Handling Arrays of Characters           14-17
Hexadecimal Numbers                     2-13
Hexadecimal Output                      12-1

                I

IF/THEN Statement Simulation            5-14
Indexed Indirect Addressing Mode        8-18
Indirect Addressing Mode                8-13
Indirect Indexed Addressing             8-16
Initializing Arrays at Assembly
 Time                                   8-8
Initializing Registers and Memory       17-3
Inputting a Line of Characters          11-13
Instruction Format (6502)               3-4
Instructions for Logical Operations     9-5
Interrupt Disable Flag (I)              5-6
Introduction to Real Instructions       4-4

                J

JMP Instructions                        5-3

                L

Labels and Variables                    4-9
Loops                                   5-10

                M

Masking Operations                      9-7
Modifying Instruction Code
 (Patching)                             17-6
Multiple-Precision Decimal
 Arithmetic                             10-9
Multiple-Precision Decrements           10-10
Multiple-Precision Increments           10-9
Multiple-Precision Logical
 Operations                             10-1
Multiple-Precision Logical



 Shift-Right Sequences                  10-4
Multiple-Precision Rotate-Left
 Sequences                              10-4
Multiple-Precision Rotate-Right
 Sequences                              10-5
Multiple-Precision Shifts
 and Rotates                            10-3
Multiple-Precision Signed
 Arithmetic                             10-9
Multiple-Precision Unsigned
 Arithmetic                             10-6
Multiple-Precision Unsigned
 Comparisons                            10-11
Multiple-Precision Unsigned
 Substraction                           101-8
Multiplication                          13-1

*****************************************************************

                N

Nibbles (NYBBLES?) Bytes,
 and Words                              2-10
Numeric Input                           12-8

                O

OR Function                             9-3
Outputting Byte Data as a Decimal
 Value                                  12-2
Outputting Signed 16-Bit Integers       12-6
Outputting 16-Bit Unsigned
 Integers                               12-4

                P

Passing Parameters                      7-13
Processor Status (P) Register           5-5
Program Counter (PC)                    3-4
Program Debugging Session               17-10
Program Status Word (P or PWS)          3-4
Purpose of Manual                       1-1

                R

Radix and Other Nasty Diseases          2-14
Register Increments and
 Decrements                             4-8

                S

Scope of Manual                         1-1
Shift and Rotate Instructions           9-13
Shifting and Rotating Memory
 Locations                              9-16
Signed Arithmetic                       6-5
Signed BCD Arithmetic                   6-10
Signed Comparisons                      6-7,10-14



Signed Decimal Input
Signed Integers                         2-11
Stack Pointer (SP)                      3-4
Standard Output and Peripheral
 Devices                                11-9
String Assignments                      14-5
String Comparisons                      14-12
String Concatenation                    14-9
String Functions                        14-7
String Handling                         14-1
Substraction                            6-4
Substring Operations                    14-11
Sweet-16                                16-10
Sweet-16 Hardware
 Requirements                           16-10

                T

Testing Boolean Values                  5-18
Two and 3-Byte Instructions             3-6

                U

Unsigned BCD Arithmetic                 6-8
Unsigned Decimal Input                  12-11
Unsigned Integer (Binary) Arithmetic    6-1
Unsiogned Integer                       2-9
Using ASL to Perform
 Multiplication                         9-17
Using Bit Strings to Represent
 Instructions                           2-16
Using Index Registers to
 Access Array Elements                  8-10
Using Shifts and Rotates to
 Pack Data                              9-20
Using Shifts to Unpack Data             9-19

                V

Variable Problems                       7-4

                X

X-Register (X)                          3-3

                Y

Y-Register (Y)                          3-3

                Z

Zero Page Addressing                    8-1

                6

6502 Addressing Modes                   3-8


