APPLICATION AP-62
NOTE .

- .- November 1979

8

APPLICATIONS

1. INTRODUCTION

The purpose of this application note is to provide the
reader with the design. concepts and factual tools
needed to integrate Intel peripherals and microproc-
essors into a low cost raster scan CRT terminal. A
previously published application note, AP-32, pre-
sented one possible solution to the CRT design
question. This application note expands upon the
theme established in AP-32 and demonstrates how
to design a functional CRT terminal while keeping
the parts count to a minimum.

For convenience, this application note is divided
into seven general sections:
1. Introduction
CRT Basics
8275 Description
. Design Background
. Circuit Description
. Software Description
" 7. Appendix

- NV IF NI)

There is no question that microprocessors and LSI
peripherals have had a significant role in the evolu-
tion of CRT. terminals. Microprocessors have
allowed design engineers to incorporate an abun-
dance of sophisticated features into terminals that
were previously mere slaves to a larger processor. To
complement microprocessors, LSI peripherals have
reduced component count in many support areas. A
typical LSI peripheral easily replaces between 30
and 70 SSI and MSI packages, and offers features
and flexibility that are usually not available in most
hardware designs. In addition to replacing a whole
circuit board of random logic, LSI circuits also
reduce the cost and increase the reliability of design.
Fewer interconnects increases mechanical reliability
and fewer parts decreases thie power consumption
and hence, the overall reliability of the design. The
reductiori of components also yields a circuit that is

easier to debug during the acétual manufacturing -

phase of a product.

" Until the era of advanced LSI circuitry, a typical -

CRT terminal consisted of 80 to 200 or more 'SSI
and MSI packages. The first microprocessors and
peripherals dropped this component count to be-
tween 30 and 50 packages. This application note
describes a CRT terminal that uses 20 packages.

2. CRT BASICS

The raster scan display gets its name from the fact
that the image displayed on the CRT is built up by
. generating a series of lines (raster) across the face of

the CRT. Usually, the beam starts in the upper left

- hand corner of the display and simultaneously
moves left to right and top to bottom to put a series

=== —me RETRACE LINES
DISPLAYED LINES
Figure 2-1. Raster Scan

of zig-zag lines on the screen (Fig. 2.1). Two simul-
taneously operating independent circuits control the
vertical and horizontal movement of the beam.

As the electron beam moves across the face of the
CRT, a third circuit controls the current flowing in
the beam. By varying the current in the electron
beam the image on the CRT can be made to be as
bright or as dark as the user desires. This allows any

desired pattern to be displayed.

When the beam reaches the end of a line, it is
brought back to the beginning of the next line at a
rate that is much faster than was used to generate
the line. This action is referred to as “retrace”.
During the retrace period the electron beam is
usually shut off so that it doesn’t appear on the
screen,

As the electron beam is moving across the screen
horizontally, it is also moving downward. Because
of this, each successive line starts slightly below the
previous line.. When the beam finally reaches the
bottom right hand corner of the screen, it retraces
vertically back to the top left hand corner. The time
it takes for the beam.to move from the top of the

- screen to the bottom and back again to the top is

&2

usually referred to as a “frame”. In the United

* States, commercial television broadcast use 15,750

Hz as the horizontal sweep frequency (63.5 micro-
seconds per horizontal line) and 60 Hz as the vertical
sweep frequency or “frame” (16.67 milliseconds per
vertical frame). .

Although, the 60 Hz vertical frame and the 15,750 Hz
horizontal line are the standards used by commercial -
broadcasts, they are by no means the only frequency
at which CRT’s can operate. In fact, many CRT
displays use a horizontal scan that is around 18 KHz
to 22 KHz and some even exceed 30 KHz.-As the

AFN-01304A

- APPLICATIONS

horizontal frequency increases, the number of hori-
zontal lines per frame increases. Hence, the resolution
on the vertical axis increases. This increased resolu-
tion is needed on high density graphic displays and
on special text editing terminals that display many
lines of text on the CRT.

Although many CRT's operate at non-standard
horizontal frequencies, very few operate at vertical
frequencies other than 60 Hz. If a vertical frequency
other than 60 Hz is chosen, any external or internal
-magnetic or electrical variations at 60 Hz will
modulate the electron beam and the image on the
screen will be unstable. Since, in the United States,
the power line frequency happens to be 60 Hz, there
is a good chance for 60 Hz interference to exist.
Transformers can cause 60 Hz magnetic fields and
power supply ripple can cause 60 Hz electrical
variations. To overcome this, special shielding and
power supply regulation must be employed. In this
design, we will assume a standard frame rate of 60 Hz
and a standard line rate of 15,750 Hz.

By dividing the 63.5 microsecond horizontal line
rate into the 16.67 millisecond vertical rate, it is
found that there are 262.5 horizontal lines per
vertical frame. At first, the half line may seem a bit
' odd, but actually it allows the resolution onthe CRT
to be effectively doubled. This is done by inserting a

second set of horizontal lines between the first set:
(interlacing). In an interlaced system the line sets are

ot generated simultaneously. In a 60 Hz system,
first all of the even-numbered lines are scanned: 0, 2,
4,...524. Then all the odd-numbered lines: 1, 3, 5,...
525. Each set of lines usually contains different data
(Fig. 2.2).

‘ EVEN FIELD
= = ODD FIELD

RETRACE LINES
NOT SHOWN

Figure 2-2. Interlaced Scan

Although interlacing provides greater resolution, it
also has some-distinct disadvantages. First of all, the
circuitry needed to generate the extra half horizontal-
line per frame is quite complex when compared to-a
noninterlaced design, which requires an integer
number of horizontal lines per frame. Next, the
overall vertical refresh rate is half that of a noninter-
laced display. As aresult, flicker may result when the
CRT uses high speed phosphors. To keep things as
simple as possible, this design uses the noninterlaced
approach.

The first thing any CRT controller must do is
generate pulses that Qefine the horizontal line timing
and the vertical frame timing. This is usually done by
dividing a crystal reference source by some appro-
priate numbers. On most raster scan CRT’s the
horizontal frequency is very forgiving and can vary
by around 500 Hz or so and produce no ill effects.
This means that the CRT itself can track a horizontal
frequency between 15250 Hz and 16250 Hz, or in
other words, there can be 256 to 270 horizontal lines
per vertical frame. But, as mentioned earlier, the
vertical frequency should be.60 Hz to insure stability.

The characters that are viewed on the screen are
formed by a series of dots that are shifted out of the
controller while the electron beam moves across the
face of the CRT. The circuits that create this timing
are referred to as the dot clock and character clock.
The character clock is equal to the dot clock divided
by the number of dots used to form a character along
the horizontal axis and the dot clock is calculated by
the following equation:

DOTCLOCK (Hz) =(N+R)*D*L*F
‘where N is the number of displayed characters per
row, . :

R is the number of retrace character time
increments,

D is the number of dots per character,
L is the number of horizontal lines per frame and
F is the frame rate in Hz.

In this design N = 80, R =20, D = 7, L = 270, and
F = 60 Hz. If the numbers are plugged in, the dot
clock is found to be 11.34 MHz.

The retrace number, R, may vary from system to
system because it is used to establish the margins on
the left and right hand sides of the CRT. In this
particular design R = 20 was empirically found it be
optimum. The number of dots per character may
vary depending on the character generator used and
the number of dot clocks the designer wants to place
between characters. This design uses a 5 X 7 dot
matrix and allows 2 dot clock periods between
characters (see Fig. 2.3); since 5 + 2 equals 7, we find

’ that D = 7.

AFN-01304A

APPLICATIONS -

2
5 Dots—w{[Dots
OEEERCICCOEERCOCOOROOCN0
Il OO JHC]

« OJRCOOEOOE HOORCO0OEd
s ONRRROOOROOOROON [m]
T OEOWEC [| [|mm] [mi [m] [m]
OECOOROOOROOCIROCONECEED
N munl waw | | [wen Ese 6]
Figure 2-3. 5 X 7 Dot Matrix :

The number of lines per frame can be determined by
the following equation:

L=(H*Z)+V
where, H is the number of horizontal lines per
character, .

" Z is the number of character lines per frame and

V is the number of horizontal lines during vertical -
retrace. In this design, a 5 X 7 dot matrix is to be
placed on a 7 X 10 field, so H = 10. Also, 25 lines are
to be displayed, so Z = 25. As mentioned before,
V = 20. When the numbers are plugged into the
equation, L is found to be equal to 270 lines per
frame. i)

The designer should be cautioned that these numbers

are interrelated and that to guarantee proper opera-
tion on a standard raster scan CRT, L should be
between 256 and 270. If L does not lie within these
bounds the horizontal circuits of the CRT may not
be able to lock onto the driving signal and the image
will roll horizontally. The chosen L of 270 yields a
horizontal frequency of 16,200 KHz on a 60 Hz
frame and this number is within the 500 Hz tolerance
mentioned earlier. ’

The V number is chosen to match the CRT in much
the same manner as the R number mentioned earlier.
When the electron beam reaches the bottom right
corner of the screen it must retrace vertically to the
top left corner. This retrace action requires time,
usually between 900-1200 microseconds. To allow
for this, enough horizontal sync times must be
inserted during vertical retrace. Twenty horizontal
sync times ‘at 61.5 microseconds yield a total of
1234.5 microseconds, which is enough time to allow
the beam to return to the top of the screen.

The choices of H and Z largely relate to system
design preference. As H increases, the character size -
along the vertical axis increases. Z is simply the
number of lines of characters that are displayed and
this, of course, is entirely a system design option.

BLOCK DIAGRAM

CHARACTER
| COUNTER]' eeLk
T
DISPLAY
ROW COUNTERS
DATA BUFFER BUFFER
0B, C> BUS D <_—_> INPUT ouTPUT
il BUFFER CON- CON- Ccos
) TROLLER | | TROLLER

DRQ +——m—m«—————
LINE

COUNTER LCo3

/
-~) LAga

AD = READ/ |+ HRTC
WRITE/ . “ASTTNIT)'M'NG I VRTC
WH —mqy _ DMA Q <.__> R — HLGT
CONTROL — Rwv
LOGIC CONTROL —= LTEN
Ag —] | vsp
:> GPAQ 4

LIGAT PEN
REGISTERS

LPEN

PIN CONFIGURATION

- ez 1 40 D vee
ez [2 39 [1 Lag
e 3 3 [0 LAy
o 04 37 [LTEN

" pra 5 36 [J RvV

BAER [} s ° 35 [vsp

HRTC (] 7 [eraq

vrTCc (] 8 337 apag
RO s 32 [HLGT
WR 1w ss 3 IRQ

ween [11 30 1. coLk
oBg [12 29 [] cce
oey [13 . 28]] ces
pez [] 14 271 cca
psz [} 15 261 ccs
oeg (] 16 25{] cc2
oBs [} 17 24[J ccq
pBg [] 18 23] cco
pey [18 221 s

Gno [20 2 Ag

Figure 3-1. 8275 Block Diagram/Pin Configuration

AFN-01304A

i APPLICATIONS

3, 8275 DESCRIPTION

A block diagram and pin configuration of the 8275
are shown in Fig. 3.1. The following is a description
of the general capabilities of the 8275.

3.1 CRT DISPLAY REFRESHING

The 8275, having been programmed by the designer
to a specific screen format, generates a series of
DMA request signals, resulting in the transfer of a
row of characters from display memory to the 8275°s
row buffers. The 8275 presents the character codes
to an external character generator ROM by using
outputs CCO-CC6. External dot timing logicis then
used to transfer the parallel output data from the
character generator ROM serially to the video input
of the CRT. The character rows are displayed on the

CRT one line at a time. Line count outputs LC0-LC3 |

are applied to the character generator ROM to
perform the line selection function. The display
process is illustrated in Figure 3.2. The entire
process is repeated for each display row. At the
beginning of the last displayed row, the 8275 issues
an interrupt by setting the IRQ output line. The
8275 interrupt output will normally be connected to

the interrupt input of the system central processor.

N

The interrupt causes the CPU to execute an interrupt
service subroutine. The service subroutine typically
re-initializes DMA controller parameters for the

“ next display refresh cycle, polls the system keyboard

controller, and/ or executes other appropriate func-
tions. A block diagram of a CRT system implemented
with the 8275 CRT Controller is provided in Figure
3.3, Proper CRT refreshing requires that certain
8275 parameters be programmed prior to the begin-
ning of display operation. The 8275 has two types of
programming registers, the Command Registers
(CREG) and the Parameter Registers (PREG). It
also has a Status Register (SREG). The Command
Registers may only be written to and the Status
Registers may only be read. The 8275 expects to
receive a command followed by a sequence of from 0

- to 4 parameters, depending on the command. The

8275 instruction set consist of the eight commands
shown in Figure 3.4.

To establish the format of the display, the 8275
provides a number of user programmable display
format parameters. Display formats having from 1
to 80 characters per row, 1 to 64 rows per screen, and
1 to 16 horizontal lines per row are available.

In addition to transferring characters from memory

1st 2nd 3rd
Character Character Character

Character

S5th 6th 7th
Character Character Character

e Y
DDIIIIDDD-DDDD.DDIIIIIDDDDDDDDU.IIIDDDDI--DDDIDDDID

First Line of a Character Row

3rd -
Character

st 2nd
Character Character

OONRRROCONCOONORCONRNEER0D00000D00ENERO00
OED000RCORe00080 08 0000000000000W000R00M0

Second Line of a Character Row

1st 2nd 3rd
Character Character Character

OONSRROOORCO0CNCONEANECDO00000O0ORE R0
GecOCOE0ORRCOOR0O&0000000000000N00080
Ce000COE008COCOR00R0000000000000w000Oan

Character

Character

Sth 6th 7th
Character Character Character
OomEROO0ORO00CE0D
mOCO0e00s000m0
5th 6th 7th

Character Character Character

Third Line of a Character Row

1st” 2nd 3rd 5th 6th 7th
Character Character Character Character Character Character Character
i e— it et e .. s ot et et 2 — — T
OOEREEOOOSD000N0DNEEREJ0000000CEsAE0000RREO00RCO0OM0
Os0000e00EE000RCON0C0800000000a0 DECORCOOMCOROCO0ORO
CEOO00W0ORORO0RCORO0000000000000 [(ulal Isluln] Jsu] Inisis] =)
OmO0COROOs0COOe00ESEE 000C000000NEEE 0008 D00UN00ONCEO80
OEDO0Ce00S00ONCECO8 000000C000000RCRCO00OR000OR0OOROEOED
OE0000EO0R000OEECOa0D000000000CONOOa0008D00R0ONDEC8 D
CORSRSD00N0000OEOOSEEEN 0000000000 0D0CNCCOBRN000080OR00

Seventh Line of a Character Row

Figure 3-2. 8275 Row Display

AFN-01304A

APPLICATIONS

VIDEO SIGNAL

function to increase the CRT beam intensity to a
level greater than normal. The fifth timing signal,
RVV (Reverse Video) will, when enabled, cause the
system video output to be inverted.

aasa |20] roansren 200 —) cHaracter
A I N .
. e] GENERATOR HIGH
pROCESSOR| nack | tose | omk a5 f—2=8 ROM |[——/| speep | HORIZONTALSYNC
CRT TI?A?LG TO CRT
—- CONTROLLER LOGIC VERTICAL SYNC
cCLK AND
j> INTERFACE INTENSITY
: VIDEO CONTROLS _
SYSTEM BUS
PEN
82535 8251 PROGRAM/ KEE%&';%/;-:D
DISPLAY
coTl:,\N,‘;:R/ USART MEMORY CONTROLLER
ISERIAI.l
COMMUNICATIONS KEYBOARD STATUS
CHANNEL
Figure 3-3. CRT System Block Diagram
to the CRT screen, the 8275 features cursor position
control. The cursor position may be programmed,
e . . NO. OF
via X and Y cursor position registers, to any PARAMETER
character position on the display. The user may
s COMMAND BYTES NOTES
select from four cursor formats. Blinking or non- -
blinking underline and reverse video block cursors RESET 4 Display format pa-
are available. : rameters required
- START . 0 DMA operation pa-
3.2 CRT TIMING - ’ DISPLAY rameters included
The 8275 provides two timing outputs, HRTC and in command
VRTC, which are utilized in synchronizing CRT)
. : : sTOP 0 —
horizontal and vertical oscillators to the 8275 DISPLAY
refresh cycle. In addition, whenever HRTC or VRTC
is active, a third timing output, VSP (Video Sup- READ . 2 : -
press) is true, providing a blinking signal to the dot LIGHT
timing logic. The dot timing logic will normally PEN
inhibit the video output to the CRT during the time LOAD 2 Cursor XY posi-
when video suppress signal is true. An additional CURSOR tion parameters re-
timing output, LTEN (Light Enable) is used to . quired
provide the ability to force the video output high ‘
. . ENABLE 0 —_
regardless of the state of VSP. This feature is used
INTERRUPT
by the 8275 to place a cursor on the screen and to
control attribute functions.” Attributes will be DISABLE 0 -
considered in the next section. . INTERRUPT
The HLGT (Highlight) output allows an attribute PRESET 0 Clears all internal
counters

COUNTERS

Figure 3-4. 8275’s Instruction Set -

AFN-01304A

&

APPLICATIONS

Character attributes were designed to produce the following graphics:

CHARACTER ATTRIBUTE
CODE "“cCcC”

OUTPUTS

,_
>
-

VSP | LTEN SY.MBOL

DESCRIPTION

bove Underline

0000 Underline

Below Underline

Top Left Corner

|Above Underlihe

0001 Underline

Below Underline

Top Right Corner

lAbove Underline

- 0010 Underline
) Below Underline

Bottom Left Corner

lAbove Underline

0011 Underline

Below Underline

Bottom Right Corner

IAbove Underline .

0100 Underline

Below Underline

Top Intersect

Above Underline

0101 Underline

Below Underline

. Right Intersect

[Above Underline

0110 Underline

Below Underline

Left Intersect

Above Underline

ot Underline

Below Underline

L

Bottom Intersect

[Above Underline

1000 Underline

Below Underline

Horizontal Line ~

Above Underline

1001 " _Underline

olo|o|ojo|ojo|o|o|=|o|ol=|c|o|eo|e|o|=io|o|=|oje|=| oo e

Below Underline

Vertical Line

Above Underline

1010 Underline

Below Underline

1

Crossed Lines

Above Underline

101 Underline

Below Underline

Not Recommended *

Above Underline

1100 Underline

Below Underline

ol|d|o|o|o|olo|oje|e

OCOOOO—‘.O-'ﬂ7'—'OOOOO—'—'O-‘ﬂ—i-d;l'OQO—-—*OQ—-—-—IO—-ODE

—--naooooooooo-o--ooooo'ooooo-—-oo-oooo-tooa
OOOOOOO—'OOOOQ—-OOdOOOOOOQO—OOOOOQOOOOQO

Special Codes

Above Underline

1101 " Underline

v Unde_fined_—

Below Underline

Illegal

Above Underline

1110 | Underline
-~ |Below Underline

Undefined

Illegal

Above Underline

1M1 Underline

Below Underline

Undefined

|

Iilegal

*Character Attribute Code 1011 is not recommended for
normal operation. Since none of the attribute outputs are
active, the character Generator will not be disabled, and
an indetermipate character will be generated.

Figure 3-5. Character Attrlbutes

Blinking is active when B = 1.

" Highlight is active when H = 1.

Character Attribute Codes 1101, 1110, and 1111 are illegal.

AFN-01304A

‘APPLICATIONS

(ABCDE FGH!JKLM\
NOPQRSTUV
12345 67809
N me— J

(ABCODEFGHI JKLM
NOPQRSTUV
123456783 ,)

EXAMPLE OF THE VISIBLE FIELD ATTRIBUTE MODE
(UNDERLINE ATTRIBUTE)

EXAMPLE OF THE INVISIBLE FIELD ATTRIBUTE MODE

(UNDERLINE ATTRIBUTE)

Flgure 3-6. Fleld Attribute Examples

3.3 SPECIAL FUNCTIONS

VISUAL ATTRIBUTES—Visual attributes are

special codes which, when retrieved from display
memory by the 8275, affect the visual characteristics
of a character position or field of characters. Two
types of visual attributes exist, character attributes
and field attributes.

Character Attribute Codes: Character attribute
codes can be used to generate graphics symbols
without the use of a character generator. This is
accomplished by selectively activating the Line
Attrrbute outputs (LAO-LAL1), the Video Suppres-
sion .output (VSP), and the Light Enable output
(LTEN). The dot timing logic uses these signals to
generate the proper symbols. Character attributes
can be programmed to blink or be highlighted
individually. Blinking is accomplished with the
Video Suppression output (VSP). Blink frequency is
equal to the screen refresh frequency divided by 32.
Highlighting is accomplished by activating the
Highlight output (HGLT). Character attributes
were desrgned to produce the graphic symbo]s
shown in Figure 3.5.

Field Attribute Codes: The field attributes are
control codes which affect the visual characteristics
for a field of characters, starting at the character
following the field attribute code up to, and includ-
ing, the character which precedes the next field
attribute code, or up to the end of the frame.

There are six field attributes:

1. Blink — Characters following the code are
caused to blink by activating the Video Sup-
pression output (VSP). The blink frequency is

equal to the screen refresh frequency divided .

by 32.

2. Highlight — Characters followrng the code are
caused to be highlighted by activating the
Highlight output (HGLT).

3. Reverse Video — Characters following the
code are caused to appear in reverse video
format by activating the Reverse Video output
(RVV)

4. Underline — Characters following the code are
caused to be underlined by actlvatmg the Light
Enable output (LTEN).

5. General Purpose — There are two additional
8275 outputs which act as general purpose,
independently programmable field attributes.
These attributes may be used to select colors or
perform other desired control functions.

The 8275 can be programmed to provide visible or
invisible field attribute characters as shown in Figure
3.6. If the 8275 is programmed in the visible field
attribute’ mode, all-field attributes will occupy a
position on the screen. They will appear as blanks
caused by activation of the Video Suppression
output (VSP). The chosen visual attributes are
activated after this blanked character. If the 8275 Is
programmed in the invisible field attribute mode,
the 8275 row buffer FIFOs are activated. The FIFOs
effectively lengthen the row buffers by 16 characters,
making room for up to 16 field attribute characters
per drsplay row. The FIFOs are 126 characters by 7
bits in size. When a field attribute is placed in the
row buffer during DMA, the buffer input controller
recognizes it and places the next character in the
proper FIFO. When a field attribute is placed in the
buffer output controller during display, it causes the
controller to immediately put a character from the
FIFO on the Character Code outputs (CCO-6). The
chosen attributes are also activated.

AFN-01304A

APPLICATIONS

LIGHT PEN DETECTION — A light-pen consists
fundamentally of a switch and light sensor. When
the light pen is pressed against the CRT screen, the
switch enables the light sensor. When the raster

sweep coincides with the hght sensor position on the

display, the hght pen output is input and the row and

character posmon coordinates are stored in two
8275 internal registers. These registers can be read
by the microprocessor. S

SPECIAL CODES — Four special codes may be -

used to help reduce memory, software, or DMA
overhead. These codes are placed in character
positions in display memory

1. End Of Row, Code - Activates VSP. VSP
remains active until the end of the line is
reached. Whrle VSP is active, the screen is
blanked.

2. End Of Row-Stop DMA. Code Causes the
DMA Control Logic to stop DMA for the rest

of the row when it is.written into the row buffer.

It affects the display inthe same way as the End
of Row Code. [-

3. End Of Screen Code - Activates VSP. VSP
. remains active until the end of the frame is
reached.

" 4. End Of Screen-Stop DMA Code - Causes the
DMA Control Logi¢ to stop DMA for the rest

of the frame when it is written into the row

buffer. It affects.the display in the same way as
the End of Screen Code.

PROGRAMMABLE DMA BURST CONTROL —
The 8275 can be programmed to request single-byte
DMA transfers of DMA burst trarsfers of 2,4, or 8
characters per burst. The interval between bursts
is also programmable. This allows the user to tailor
the DMA overhead to fit the system needs.

4. DESIGN BACKGROUND
4.1 DESIGN PHILOSOPHY'

Since the cost of any 'CRT system is somewhat
proportional to parts count, arriving at a minimum
part count solution without sacrificing performance
has been the motjvating force throughout this design
effort. To successfully design a CRT terminal and
keep the parts count to a minimum, a few things
became immediately apparent.

1. An 8085 should be used. :
2. ‘Address and data buffering should be ehmmated
3. Multr—port memory should be eliminated.

* 4. DMA should be eliminated.

Decision 1 is obyious, the 8085’s on-board clock

generator, bus controller and vectored interrupts
greatly reduce the overall part'count considerably.

Decision 2 is fairly obvious; if a circuit can be
designed so that loading on the data and address
lines is kept to a minimum, both the data and address
buffers can be eliminated. This easily saves three to
eight packages and reduces the power consumption

-of the design. Both decisions 3 and 4 require a basic

understanding of current CRT design concepts.

In any CRT design, extreme time conflicts are created
because all essential elements require -access to the
bus. The CPU needs to access the memory to control
the system and to handle the incoming characters,
but, at the same time, the CRT controller needs to
access the memory to keep the raster scan display
refreshed. To resolve this conflict two common -
techniques are employed, page buffering and line
buffering.

In the page buffering approach the entire screen
memory is isolated from the rest of the system. This
isolation is usually accomplished with three-state
buffers or two line to one line multiplexers. Of
course, whenever a character needs to be manipu-
lated the CPU must gain access to the buffered
memory and, again, possible contention between the,
CPU and the CRT controller results. This contention
is usually resolved in one of two ways, (1) the CPU is
always given priority, or; (2) the CPU is allowed to
access the buffered memory only during horizontal
and vertical retrace times.

Approach 1 is the easiest to implement from a hard-
ware point of view, but if the CPU always has
priority the display may temporarily blink or
“flicker” while.the CPU accesses the display memory.
This, of course, occurs because when the CPU
accesses the display memory the CRT controller is

"not able to retrieve a character, so the display must

be blanked during this time. Aesethically, this
“flickering” is not desirable, so approach 2 is often
used.

The second approach eliminates-the display ﬂlcker-
mg encountered in the prevrously mentioned tech-
nique, but additional hardware is required. Usually
the vertical and horizontal blank signals are gated
with the buffered memory select lines and this line is
used to-control the CPU’s ready line. So, if the CPU
wants to use the buffered memory, its ready line is
asserted until horizontal or vertical retrace times.
This, of course, will impact the CPU’s overall
through put. .

Both page buffered approaches require a significant
amount of additional hardware and for the most
part are not well suited for a minimum parts count
type of terminal. This guides us to the line buffered
approach. This approach eliminates the separate
buffered memory for the display, but, at the same
time, introduces a few new problems that must be
solved. . .

AFN-01304A

N

APPLICATIONS'

CPU

DISPLAY
MULTI-
e c; v

PLEXER

om0 b evioeo our

SYSTEM
MEMORY

SYSTEM
Vo

U ‘Hs;m...‘f:w i
ﬁ 'OhIONAL

. PAGE BUFFERING

TECHNIQUE

cPU

LINE
LogGic

VIDEO

CIRCUIT WITH
surren K)f S L rren

MEMORY

[————» VIDEO OUT

SYSTEM
AND
DISPLAY
JMEMORY

SYSTEM
Vo

LINE BUFFERING
TECHNIQUE

Flgﬁre 4-1 Line Butfering Technique

CLICK CVELES

SHIRCE STRTGENT

4]
1 []
2 WK
3 (=TI
4 LXT W ooseH
5 W ®
6 AHG
? ULD R
8 SR -
9 W . Reten
10 StH
1 PP K
12 RRC
3]
44 X1 W
15 P
1% XHG
SPHL
Ll HLsT
KCHG
Wy RD
o
KK
B RE
0P L
5. N OwK
% I RIS
IPE: SHD KD
- W R
E) 30}
F] W D-
3]
2 PP P
33 £l
3% [ag

S R RID FLAGS
GSSVEHAD L
JSRYEDRDE

STOHRD L

FFOT STREK FOINTER IN H HHD L
SFUT STRCK IN O RO E
3 GcT FOINTER

SPUT CURRER) LINE INTO SP
FEET BASK FOR SiH
ST SYECIAL TRANUSFER BIT
i 49 MFS
JET P A o
60 BALK 10 WOSHAL KODE -
PRI RL
FRD SIRCK
SPUT SIRCK IH K D L
FEESWRT Sk
sPUT EOTION DISPLAY M H RD L
i SHAP RCGISTERS
sFUT HIGH ORDER IN A
iSEE IF SRE RS N
5 IF NOT LEAVE
SPUT LOH ORDER IN R

JSEE IF SAE /5 L

#IF HOY LEAVE

sL0H0 H AHD L NITH TOP OF SCREDN MEHGRY

5FUT BASK CURRINT ADORESS
$GET HASK ENTE)

ST INTERRUPT HF¥3K
Hrodb 0 3
SGETHAD L

iGET R HID FLASS

JENRBLE INTEFFUPTS

560 BALX

TOTRL CLOCK CYOLES = 633 (MORZT CASE)

HITH A 6. 144 M2 CRYSTAL TOTAL TINE 0 FILL

ROM BUFFER ON 8275 = 650 # . 225 = 211 25 KICROSECHDS

Figure 4-2. Routine To Load 8275's Row Buffers

In the line buffered approach both the CPU and the
CRT controller share the same memory. Every time
the CRT controller needs a new character or line of
data;, normal processing activity is halted and the
CRT controller accesses memory and displays the
data. Just how the CRT controller needs to acquire
the display data greatly affects the performance of
the overall system. Whether. the CRT “controller
needs to gain access to the main memory to acquire a
single character or a complete line of data depends
on the presence of absence of a separate line or row
buffer.

If no row buffer is present the CRT controller must
£0 to the main memory to fetch every character. This
of course, is not a very efficient approach because
the processor will be forced to relinquish the bus
70% to 80% of the time. So much processor
inactivity greatly affects the overall system perform-
ance. In fact terminals that use this approach are
typically limited to around 1200 to 2400 baud on
their serial communication channels. This low baud
rate is in general not acceptable, hence this approach
was not chosen.

If a separate row. buffer is employed the CRT
controller only has to access the memory once for
each displayed character per line. This forces the
processor to relinquish the bus only about 20% to
35% of the time and a full 4800 to 9600 baud can be
achieved. Figure 4.1 illustrates these different
techniques,

The 8275 CRT controller is ideal for 1mplementmg
the row buffer approach because the row buffer is
contained on the device itself. In fact, the 8275
contains two 80-byte row buffers. The presence of
two row buffers allow one buffer to be filled while
the other buffer is displaying the data. This dual row
buffer-approach enhances CPU performance even
further.

4.2 USING THE 8275 WITHOUT DMA

Until now the process of filling the row buffer has
only been alluded to. In reality, a DMA techmque s
usually used. This approach was demonstrated in
AP-32 where an 8257 DMA controller was mated to
an 8275 CRT controller. In order to minimize
component count, this design eliminates the DMA
controller and its associated circuitry while replac-
ing them with a special interrupt-driven transfer.

The only real concern with using the 8275 in an
interrupt-driven transfer mode is speed. Eighty
characters must be loaded into the 8275 every 617
microseconds and the processor must also have time
to perform all the other tasks that are required. To
minimize the overhead associated with loading the
characters into the 8275 a special technique was
employed. This technique involves setting a Spemal

AFN-01304A

. * APPLICATIONS

transfer bit and executing a string of POP instruc-
tions. The string of POP instructions is used to
rapidly move the data from the memory into the
8275. Figure 4.2 shows the basic software structure.

In this design the 8085’s SOD line was used as the
special transfer bit. In order to perform the transfer
properly this special bit mist do two things: (1) turn
processor reads into DACK plus WR for the 8275
and (2) mask processor fetch cycles from the 8275, so
that a fetch cycle does not write into the 8275.
Conventional logic could have been used to imple-
" ment this special function, but in this design a small
bipolar-programmable read only memory was used.
Figure 4.3 shows a basic version of the hardware.

BIPOLAR

PROM |-———— 8275 DACK

TAANSFER___,. A, |—— = 8275 Rd
BIT

Ag———J Ay L w8275 W

App————ay | 8275TS
Ap—»——A3
s
(FETCH —»———A4
CYCLE)

Figure 4-3. Simplified Version of Hardware Decoder

At first, it may seem strange that we are supplying a

DACK when no DMA controller exist in the -

system. But the reader should be aware that all Intel
peripheral devices that have DMA lines actually use
DACK as a chip select for the data. So, when you
want to write a command or read status you assert
CS and WR or RD, but when you want to read or
write data you assert DACK and RD or WR. The
peripheral device doesn’t “know” if a DMA control-
ler is in the circuit or not. In passing, it should be
mentioned that DACK ‘and CS should not be
asserted on the same device at the same time, since
this combination yields an undefined result.

This POP technique actually compares quite
favorably in terms of time to the DMA technique.
One POP instruction transfers two bytes of data to
the 8275 and takes 10 CPU clock cycles to exectite,
for a net transfer rate of one byte every five clock
cycles. The DMA controller takes four clock cycles
to transfer one byte but, some time is lost in
synchronization. So the difference between the two
techniques is one clock cycle per byte maximum. If
we compare the overall speed of the 8085 to the

speed of the 8080 used in AP-32, we find that at 3
MHz we can transfer one byte every 1.67 micro-
seconds using the 8085 and POP technique vs. 2
microseconds per byte for the 2 MHz 8080 using
DMA. .

5. CIRCUIT DESCRIPTION
5.1 SCOPE OF THE PROJECT

A fully functional, microprocessor-based CRT
terminal was designed and constructed using the
8275 CRT controller and the 8085 as the controlling
element. The terminal had many of the functions
found in existing commercial low-cost terminals and
more sophisticated features could easily be added
with a modest amount of additional software. In
order to minimize component count LSI devices
were used whenever possible and software was used
to replace hardware.

- 5,2 SYSTEM TARGET SPECIFICATIONS

811

The design specifications for the CRT terminal were
as follows:

Display Format

o 80 characters per display row

e 25 display rows

Character Format

¢ 5 X 7 dot matrix character contained within a
7 X 10 matrix

e First and seventh columns blanked

¢ Ninth line cursor position

o Blinking underline cursor

Special Characters Recognized

e Control characters

® Line feed ‘

e Carriage Return

® Backspace

e Form feed

" Escape Sequences Recognized
e ESC, A, Cursor up
ESC, B, Cursor down
¢ ESC, C, Cursor right
e ESC, D, Cursor left
e ESC, E, Clear screen
o ESC, H, Home cursor .
o ESC, J, Erase to the end of the screen
e ESC, K, Erase the current line

~ Characters Displayed
® 96 ASCII alphanumeric characters
® Special control characters

AFN-01304A

- APPLICATIONS

CHARACTER

GENERATOR ROM
SPECIAL i N} CRTMoNITOR
PROCESSOR <:> TR NSFER C::> CONTROLLER & MONITOR
LOGIC ELECTRONICS
SYSTEM BUS .)
SERIAL BAUD DISPLAY PROGRAM
COMMUNICATIONS RATE :‘NETV&OF':RLE) MEMORY MEMORY
DEVICE (USART) | GeneraToR ¢ (RAM) (PROM)
CRT TERMINAL
SERIAL OUTPUT LINE
CRT TERMINAL
SERIAL INPUT LINE
POWER
KEYBOARD SUPPLY

Figure 5-1. CRT

Terminal Block Dlagram

Characters Transmitted

® 96 ASCII alphanumeric characters

® ASCII control characters

Program Memory

¢ 2K bytes of 2716 EPROM

Display/ Buffer/ Stack Memory

® 2K bytes 2114 static memory (4 packages)
Data Rate

® 9600 BAUD using 3MHz 8085

CRT Monitor

¢ Ball Bros TV-12, 12MHz B.W.

Keyboard

® Any standard un-encoded ASCII keyboard
Screen Refresh Rate

® 60 Hz

5.3 HARDWARE DISCRIPTION

A block diagram of the CRT terminal is shown in
Figure 5.1. The diagram shows only the essential

system features. A detailed schematic of the CRTis

contained in the Appendix. The terminal was
constructed on a Smele 6” by 6” wire wrap board.
Because of the minimum bus loading no buffering of
" any kind was needed (see Figure 5.2).

The “heart” of the CRT terminal is the 8085 '

microprocessor. The 8085 initializes all devices in
the system, loads the CRT controller, scans the
keyboard, assembles the characters to be trans-

Worst case bus loading:

Data Bus; 8275 20pf
8255A-5 20pf

8253-5 20pf

8253-5 20pf

8251A 20pf

2x 2114 10pf

2716 12pf

8212 12pf

114pf max

-Only Ag - A1s are |mportant since Ao - A7 are
latched by the 8212

Address Bus: 4x 2114 20pf
2716 6pf

26pf max

This Ioadlng assures that all components will be
compatible with a 3MHz 8085 and that no wait
states will be requned

Figure 5-2. Bus Loading

mitted, decodes the i mcommg characters and deter-
mines where the character is to be placed on the
screen. Clearly, the processor is quite busy.

A standard list of LSI peripheral devices surround
the 8085. The 8251A is used as the serial communi-
cation link, the 8255A-5 is used to scan the keyboard
and read the system variables through a set of

812 7 AFN-01304A

APPLICATIONS

switches, and the 8253 is used as a baud rate
generator and as a “horizontal pulse extender” for
the 8275. ’ ‘

The 8275 is used as the CRT controller in the system,
and a 2716 is used as the character generator. To
handle the high speed portion of the terminal the
8275 is surrounded by a small handful of TTL. The
program memory is contained in one 2716 EPROM
and the data and screen memory use four 2114-type
RAM:s.

All devices in this system are memory mapped. A
bipolar PROM is used to decode all of the addresses
for the RAM, ROM, 8275, and 8253. As mentioned
earlier, the bipolar prom also turns READs into
DACK’s and WR’s for the 8275. The 8255 and 8253
are decoded by a simple address line chip select
method. The total package count for the system is
20, not including the serial line drivers. If this same
terminal were designed using the MCS-85 family of
integrated circuits, additional part savings could
have been realized. The four 2114’s could have been
replaced by two 8185’ and the 8255 and the 2716
program PROM could have been replaced by one
8755. Additionally, since both the 8185 and the
2716 have address latches no 8212 would be needed,
so the total parts count could be reduced by three
or four packages.

5.4 SYSTEM OPERATION

The 8085 CPU initializes each peripheral to the
appropiate mode of operation following system
reset. After initialization, the 8085 continually polls
~ the 8251A to see if a character has been sent to'the

terminal. When a character has been received, the
8085 decodes the character and takes appropriate
action. While the 8085 is executing the above “fore-
ground” programs, it is being interrupted once every
617 microseconds by the 8275. This “background”
program is used to load the row buffers on the 8275.
The 8085 is also interrupted once every frame time,
or 16.67 ms, to read the keyboard and the status of
the 8275.

As discussed earlier, a special POP technique was |

used to rapidly move the contents of the display
RAM into the 8275’s row buffers. The characters are
then synchronously transferred to the character code
outputs CC0-CC6, connected to .the character
generator address lines A3-A9 (Figure 5.3). Line
count outputs LCO-LC2 from the 8275 are applied
to the character generator address lines, AQ-A2. The
8275 displays character rows one line at a time. The.
line count outputs are used to determine which line
of the character selected by A3-A8 will be displayed.
Following the transfer of the first line to the dot
timing logic, the line count is incremented and the
second line of the character row is selected. This

813

process continues until the last line of the row is
transferred to the dot timing logic. '

The dot . timing logic latches the output of the
character generator ROM into a parallel in,serial
out synchronous shift register. This shift register is
clocked at the dot clock rate (11.34 MHz) and its
output constitutes the video input to the CRT.

CHAR CLOCK : 4
! et =
3,0 _ N
Leo-Le2 Ag—- Az | |.vioeo
i r v
° LINE COUNT . |
T B 1 2708 7 HIGH [
. ER SPEED :
A . 8275 } GENERATORIZ—) ot TG —r—uomz DR
B ROM
j LOGIC
u s |
s L A
€C0-CC A3-Ag | vERT DR
. cHaRACTER 4 ! .
HRTC CODE
- VATC 4, !
vsP - __I
LTEN
S O

Figure 5-3 Character Generator/Dot Timing Logic
Block Diagram :

Table 5-1

PARAMETER RANGE

Vertical Blanking Time 900 usec nominal -
(VRTC)

Vertical Drive Pulsewidth 300 usec <K PW < 1.4 ms

Horizontal Blanking Time
(HRTC)

Horizontalrive Pulsewidth

11 usec nominal

25 psec << PW < 30 usec
15,750 +500 pps

Horizontal Repetition Rate

5.5 SYSTEM TIMING

Before any specific timing can be calculated it is
necessary to determine what constraints the chosen
CRT places on the overall timing. The requirements
for the Ball Bros. TV-12 monitor are shown in Table
5.1. The data from Table 5.1, the 8275 specifications,
and the system target specifications are all that is
needed to calculate the system’s timing.

|7 DOTS —»|

esesesssseccesencssnne
s0000OCe8000CCe6000CCE
€000000800000CEE0D00COE

LINE 1 ————»

#000C008880000088D00DO0OS
0000068000008 800000 @
€00000ee00000NEE000OCO®
800000880 C000E8®OC0DCS
©e0C000880000C0OEBO00OD S
e00C00E800C00E80D0OCE
eessssenvscscnsssnsese

" UNDERLINE
POSITION .
LINE 10 ———=

CHARACTER 1 CHARACTER 2. CHARACTER 3

Figure 5-4. Row Format

AFN-01304A

APPLICATIONS

First, let’s select and “match” a few numbers. From
our target specifications, we see that each character
is displayed on a 7 X 10 field, and is formed bya 5X
7 dot matrix (Figure 5.4). The 8275 allows the
vertical retrace time to be only an integer multiple of

the horizontal character line: This means that the
total number of horizontal lines in a frame equals 10
times the number of character lines plus the vertical
retrace time, which is programmed to be either 1, 2,
3, or 4 character lines. Twenty-five display.lines

CHARACTER

617ns

COUNTER

|ﬂ|:‘

4‘4.9)

QA=
°745163]
COUNTER
OUTPUTS

ac - °°—'l
CHARACTER
cLO

1

STATE I
CLOCK .

JEIERERNpEREgh

CK
I

—] || 'pd
CHARACTER = 15ns MAX
CLOTK TO =
8275

1
=

8275
C%Alr-r",ﬂ;m X FIRST CHARACTER 1 SECOND CHARACTER XTHIRD CHARACTER
(cco-cce) ’ 7 I
SHIFT
I
REGISTER j& FIRST CHARACTER VIDEO QUT "/ SECOND CHARACTER VIDEO OUT
OUTPUT / : /\-
(74166) J
".3[4] MHz 10pF
XTAL .34 MHz ? W
7404 7408 DOT cLOCK
a0t BCDEFGH
CK 74166 Qy VIDEO OUT
Ij SHIFT/LOAD I
poT SHIFT REGISTER
cLock vse
3300 3300 {8275)
LCO-LC2
b CCO-CC6 (IS;EIE) car
A
T 0 . LTEN DELAYED - MONITOR
A 7
/ HRTC
; B
2 CHARACTER 7 COUNTER our
GENERATOR i vaTe CLK 1,3 VERTICAL
{1 K
@215 5 DRIVE
D P cK VRTC DELAYED
= Q|
Figure 5-5. Dot Timing Loglc
814 AFN-01304A

APPLICATIONS

require 250 horizontal lines. So, if we wish to have
a horizontal frequency in the neighborhood of
15,750 Hz we must choose either one or two
character lines for vertical retrace. To allow for a
little more margin at the top and bottom of the
screen, two character lines were chosen for vertical
retrace. This choice yields a net 250 + 20 = 270
horizontal lines per frame. So, assuming a 60 Hz
frame: < -

60 Hz * 270 = 16,200 Hz (horizontal frequency)

This value falls within our target specification of
15,750 Hz with a 500 Hz variation and also assures
timing compatibility with the Ball monitor since, 20
horizontal sync times yield a vertical retract time of:

61.7 microseconds X 20 horizontal sync times =
1.2345 milliseconds

This number meets the nominal VRTC and vertical
drive pulse width time for the Ball monitor. A
horizontal frequency of 16,200 Hz .implies a
1/16,200 = 61.73 microsecond period. :

It is now known that the terminal is using 250
horizontal lines to display data and 20 horizontal
lines to-allow for vertical retrace and that the
horizontal frequency is 16,200 Hz. The next thing
that needs to be determined is how much time must

'

be allowed for horizontal retrace. Unfortunately,
this number depends almost entirely on the monitor
used. Usually, this number lies somewhere between
15 and 30 percent of the total horizontal line time,
which in this case is 1/16,200 Hz or 61.73
microseconds. Since in most designs a fixed number
of characters can be displayed on a horizontal line, it
is often useful to express retrace as a given number
of character times. In this design, 80 characters can
be ‘displayed on a‘ horizontal line and it was
empirically found. that- allowing 20 horizontal
character times for retrace gave the best results. So,
in reality, there are 100 character times in every
given horizontal line, 80 are used to display
characters and 20 are used to allow for retrace. It
should be noted that if too many character times are
used for retrace, less time will be left to display the
characters and the display will not “fill out” the
screen. Conversely, if not enough character times
are allowed for retrace, the display may “run off” the
screen. ‘ :

One hundred character times per complete horizontal
line means that each character requires

61.73 microseconds /100 character times = 617.3
nanoseconds. :

If we multiply the 20 horizontal retrace times by the

et |
gigiy

LA
CHAR?2

CHARACTER
eLock

LATCH
CHAR 80

LATCH
CHAR D

LATCH
CHARY

CH
AR 1

HRTC SAMPLE [4 ?
(am)_'l HRTC T ‘
. ! ;
. . . i
3 b -
150ns MAX ‘ ; ’ . i
- 7T : : . '
— — — 9— { &—_ i g —
CHAR CODE FIRST ECOND THIRD FOURT! Bl ! FIRST
(82751 \ \ y\ / \ ARACTER CHARACTER, : | ACHARACTER
— — | N = N (— ‘
N ; NeT
!
¢ L
il K
LINE COUNT)
@275} .
[;
HIFT 4 & +
REGISTER 10AD L0a0 LOAD 10AD Lo/ :
LOADING CHAR X CHAR 1 CHAR 2 CHARD CHAR B0 ! !
T T | ‘
‘ i
|
vioo I . ‘ !
outeuT woeo | wioto | wioeo | kK vioco i
FOR 1ut FOR 20d FOR 3rd FOR 80th ¢ . 1
cHAR cHAR CHAR cHaR i i {
I : .
| 1 l l | I .)

Figure 5-6. CRT System Timing

815 - AFN-01304A

APPLICATIONS

617.3 nanoseconds needed for each character, we find

617.3. nanoseconds * 20 retrace times = 12.345
microseconds =~

This value falls short of the 25 to 30 microseconds
required by the horizontal drive of the Ball monitor.
To correct for this, an 8253 was programmed in the
one-shot mode and was used to extend the horizorital
drive pulsewidth. :

Now that the 617.3 nanosecond character clock
period is known, the dot clock is easy to calculate.
Since ‘each character is formed by placing 7 dots
along the horizontal.

DOT CLOCK PERIOD = 617.3 ns
(CHARACTER CLK PERIOD)/ 7 DOTS

DOT CLOCK PERIOD = 88.183 nanoseconds

DOT CLOCK FREQUENCY = 1/PERIOD =
11.34 MHz . - ' -

Figures 5.5 and 5.6 illustrate the basic dot timing
and the CRT system timing, respectively. = -

6. SYSTEM SOFTWARE
6.1 SOFTWARE OVERVIEW -

As mentioned earlier the software is structured on a
“foreground-background” basis. Two interrupt-
driven routines, FRAME and POPDAT (Fig. 6.1)
request service every 16.67 milliseconds and 617
microseconds respectively, frame is used to check
the baud rate switches, update the system pointers
and decode and assemble the keyboard characters.
POPDAT is used to move data from the memory
into the 8275’s row buffer rapidly.

The foreground routine first examines the line-local
switch to see whether to accept data from the
USART or the keyboard. If the terminal is in the
local mode, action will be taken on any data that is
entered through the keyboard and the USART will
be ignored on both output and input. If the terminal
is in the line mode data entered through the
keyboard will be transmitted by the USART and
action will be taken on any data read out of the
USART. ~

When data has been entered in the terminal the
software first determines if the character received
was an escape, line feed, form feed, carriage return,
back space, or simply a printable character. If an
escape was received the terminal assumes the next
received character will be a recognizable escape
sequence character. If it isn’t no operation is
performed. '

After the character is decoded, the processor jumps
to the routine to perform the required task. Figure

6.2 is a flow chart of the basic software operations; .

the program is listed in Appendix 6.8.

816

'FRAME
INTERRUPT

!

' SET UP
POINTERS

SWITCHED
CHANGED

SET BAUD
RATE

L

READ KEYBOARD
RAM

* WRITE KEYBOARD o .. [NO
RAM .

READ
KEYBOARD - -

!

WRITE KEYBOARD
’ RAM

ASSEMBLE
CHARACTER

.
v

EXIT

POPDAT
INTERRUPT

Iv.

. SETUP
POINTERS

DO 40
POPS

|

RESTORE
POINTERS

|

EXIT

Figure 6-1. Frame and Popdat Interrupt Routines

AFN-01304A

APPLICATIONS

USART
HAS
CHARACTER,
?

DECODE
CHARACTERS

. TAKE ACTION ON
DECODED CHARACTER

" TRANSMIT
CHARACTER

Figure 6-2. Basic Terminal Software

1st Column 2nd Column 80th Column

ROW 1 |0800H 0801H....... e 084FH |
ROW2 |0850H O0851H........... ..089FH
ROW3 | 08AOH O08A1H \......08EFH
ROW4 | 08FOH - 08F1H............. 093FH
ROWS5 |0940H Q941H............. 098FH |
ROW6 | 0990H O0991H............. ‘090FH
ROW?7 |09EOH OSE1H............ 0A2FH
ROW 8 | 0A30H OA31H 0A7FH
ROW9 | OA80H OAB1IH OACFH |
ROW 10 | OADOH OAD1H e 0B1FH
ROW 11 [0B20H O0B21H 0B6FH |
ROW 12 | OB70H OB71H0BBFH|
ROW. 13 | OBCOH OBC1H 0COFH
ROW'14' | 0OC10H OC11H 0C5FH
ROW 15 | 0C60H 0C61H O0CAFH
ROW 16 | 0CBOH OCB1H0CFFH
ROW 17 | ODOOH. 0DO1H OD4FH
ROW 18 | OD50H GDS51H OD9FH
ROW 19 | ODAOH ODA1H ODEFH
ROW 20 | ODFOH ODF1H OE3FH
ROW 21 | OE40H OE41H............. OEBFH
ROW 22 | OESOH OE91H............ OEDFH
ROW 23 | OEEOH OEE1H OF2FH
ROW 24 | OF30H OF31H............. OF7FH
|ROW 25 | OF8OH OF81H............ OFCFH

: Flguré 6-3. Screen blsplay After inltialization

6.2 SYSTEM MEMORY ORGANIZATION _

The display memory organization is shown in
Figure 6.3. The display begins at location 0800H in
memory and ends at location OFCFH. The 48 bytes
of RAM from location OFDOH to OFFFH are
used as system stack and temporary systém storage.
2K bytes of PROM located at 0000H through
07FFH contain the systems program :

'6.3 MEMORY POINTERS‘ AND SCROLLING

To _calculate the location of a character on the

screén, three variables must be defined. Two of these
variables are the X and Y position of the cursor
(CURSX, CURSY). In addition, the memory
address defining the top line of the display must be
known, since scrolling on the 8275 is accomplished
simply by changirig the pointer that loads the 8275’
row buffers from memory. So, if it is desired to
scroll the display up or down all that must be
changed is one 16-bit memory pointer. This pointer
is entered into the system by the variable TOPAD
(TOP Address) and always defines the top line of the
display. Figure 6.4 detalls screen operatlon during
scrolling.

Subroutines CALCU (Calculate) and ADX (ADd X
axis) use these three variables to calculate ai:
absolute memory address. The subroutine CALCU
is used whenever a location in the screen. memory

. must be altered.

6 4 SOFTWARE TIMING

One important question that must be asked about
the terminal software is, “How fast does it run”. This .
is important because if the terminal is running at :
9600 baud, it must be able to handle each received -
character in 1.04 milliseconds. Figure 6.5 is. a
flowchart of the subroutine execution times. It
should be pointed out that all of the times listed are
“worst case” execution times. This means that all
routines assume they must do the maximum amount

+ of data manipulation. Forinstance, the PUT routine

assumes:that the character is being placed in the last -
column and that a line feed must follow the placing
of the character on the screen. :

How fast do the routines need to execute in order to

assure operation at 9600 baud? Since POPDAT
interrupts occur every 617 microseconds, it is
possible to receive two complete interrupt requests.
in every character time (1042 microseconds) at 9600

AFN-01304A

APPLICATIONS

ROW 1 |0800H 080tH............. 084FH ROW2 |0850H O0851H............. 089FH
ROW 2 |0850H 0851H............. 089FH ROW3 |08A0H O0BA1TH 08EFH
ROW 3 |08AOH O08A1H 08EFH ROW4 |08FOH O8F1H............. 093FH
ROW4 |08FOH O8F1H.............093FH| = |ROWS5 [0940H 0941H.............098FH
ROWS5 [0940H OQ941H............. ‘098FH ROW®6 |0990H O0991H............. 090FH
ROWS6 |0990H O0991H............. 090FH ROW7 |09EOH O09E1H............ OA2FH!
ROW7 |09EOH O9E1H............ 0A2FH ROW S8 |0A30H O0A31H 0A7FH!
ROWS8 |[O0A30H OA31H 0A7FH ROWS9 |0ABOH OA81H OACFH’
ROW9 |OA80H OA81H 0ACFH ROW 10 | OADOH OAD1H........... OB1FH
ROW 10 | OADOH OAD1H 0B1FH ROW 11 |0B20H O0B21H 0B6FH
ROW 11 |0B20H 0B21H 0B6FH| -~ |ROW 12 |0B70H OB71H 0BBFH
ROW 12 |0B70H OB71H 0BBFH ROW 13 |0BCOH OBCiH........... OCOFH
ROW 13 |0OBCOH OBC1H O0COFH ROW 14 |0C10H OC11H OC5FH
ROW 14 |0C10H OC11H e 0C5FH ROW 15 |0€60H OC61H 0CAFH
ROW 15 |0C60H OC61H 0CAFH ROW 16 | 0CBOH O0CB1H, OCFFH
ROW 16 | 0OCBOH OCBiH........... OCFFH ROW 17 |ODOOH ODO1H OD4FH |-
ROW 17 | ODOOH ~ ODO1H e 0D4FH ROW 18 | OD50H ODS51H OD9FH
ROW 18 |OD50H ODS51H OD9FH ROW 19 | ODAOH ODA1H,O0DEFH
ROW 19 | ODAOH ODA1H ODEFH ROW 20.{0DFOH . ODF1H OE3FH
ROW 20 |ODFOH ODF1H OE3FH ROW 21 |OE40H OE41H............. OE8FH
ROW 21 | 0E40H OE41H............. OESFH | ROW 22 |OEQOH OE91H............ OEDFH
ROW 22 |OE9OH OE91H............ OEDFH ROW 23 | OEEOH OEE1H0F2FH
ROW 23 | OEEOH OEE1H OF2FH ROW 24 |OF30H OF31H............. OF7FH
ROW 24 |OF30H OF31H............. OF7FH ROW 25 {OF80H OF81H............ OFCFH
ROW 25 | OF80OH OF81H............ OFCFH ROW 1 |0800H 0801H........... ..084FH
R After Initialization) After 1 Scroll ’
ROW3 |08A0H O08A1H 08EFH ROW 4 |08FOH L O08F1H...... P 093FH
ROW 4 |08FOH O8F1H............ .093FH ROWS5 |0940H O0941H............. 098FH
ROWS5 |0940H. 0941H............. 098FH ROW®6 |0990H O0991H............. 090FH
ROW®6 [0990H O0991H............. 090FH | - ROW.7 |09EOH O9E1H............ 0A2FH
ROW 7 | 09EOH - O9E1H............ 0A2FH ROW 8 |0A30H OA31H 0A7FH
ROW S8 |[0A30H OA31H 0A7FH ROW 9 |0A80H OA81H 0ACFH
ROW 8, | 0ABOH O0A81H0ACFH ROW 10 | OADOH OAD1H OB1FH
ROW 10 | CGADOH OAD1H OB1FH ROW 11 |0B20H OB21H 0B6FH.
ROW 11 { 0B20H OB21H 0B6FH ROW 12 |0B70H OB71H 0BBFH
ROW 12 | 0B70H OB71H0BBFH ROW 13 |0BCOH OBCiH| 0COFH
ROW 13 {0BCOH OBC1H........... 0COFH ROW 14 |0C10H OCM11H 0C5FH
ROW 14 | 0C10H OC11H 0C5FH ROW 15 | 0C60H OC61H O0CAFH
ROW 15 | 0C60H O0C61H OCAFH ROW 16 |0CBOH OCB1H OCFFH
ROW 16 |OCBOH OCB1H OCFFH | ROW 17 {ODOOH ODO1H OD4FH
ROW 17 | ODOOH ODO1H ‘OD4FH ROW 18| 0OD50H ODS51H 0D9FH
ROW 18 [OD50H ODS5S1H OD9FH ROW 19 { ODAOH ODA1TH ODEFH
ROW 19 | ODAOH ODA1H ODEFH ROW 20 |ODFOH ODF1H0E3FH
ROW 20 | ODFOH ODF1H OE3FH ROW 21 |0E40H OE41H............. OE8FH
ROW 21 |OE40H OE41H............. OE8FH ROW 22 |OE9QOH OESQ1H............ OEDFH
ROW 22 | OESOH OES1H.......... "..OEDFH ROW 23 | OEEOH OEE1H OF2FH
ROW 23 | OEEOH OEE1H O0F2FH ROW 24 | 0F30H OF31H.......... ...OF7FH
ROW 24 |OF30H OF31H........... ..0OF7TFH ROW 25 |OF80H . OF81H............ OFCFH
ROW 25 | OFBOH -OF81H............ OFCFH ROW 1 |0800H O0801H............. 084FH
ROW 1 |0800H O0801H............. 084FH ROW 2 |0850H 0851H............. 089FH
ROW 2 |0850H O0851H.............089FH ROW 3 |08A0H O08A1H ‘......08EFH
After 2 Serolls ' After 3 Scrolls -

Figure 6-4. Screen Memory During Scrolling

818 ‘ : AFN-01304A

APPLICATIONS

baud. Each POPDAT interrupt executes in 211
microseconds maximum. This means that each
routine must execute in:

1042 - 2 * 211 = 620 microseconds

By adding up the times for any loop, it is clear that
all routines meet this speed requirement, with the
exception of ESC J. This means that if the terminal
is operating at 9600 baud, at least one character time
must be inserted after an ESC J sequence.

INITIALIZE

53us

I
CHREC
43us

NO
338us

T T T

esc A escB escC escD escE escH escJ escK LF
78.7u8 324u8 107us 119us 316us 105us 862us 310us 306us 42us

CR OUT
456

O O A O

_ Figure 6-5. Timing Flowchart

819

AFN-01304A

00y

10, —
8212 L] o
00, ics
ic2 o0s |
17 2716 &
vee |, 00g
) 18
oA 00,
2 [z 7 h Ag A A3y Ay Ay Ay AghipQEg 0y p D Dy 05 D0y CE it
o "“ezz H30200DAEEES INEDEGEESS 7
1 <18 nig *
_ oy P2
g |22 ’
g |28
. g
Dig
7
ol]
oty 4
13
05, o P
3
ALE
ATy pa—
XTALL—] !
10 I L]
8253
7O ek our
[] T
16CI0
7474 8085
10K |,
ELY N
' 56 ict
N
LINE
LOCAL
_EO/ s
TO ALL 3
RESETS ~— RESET QU
DRQ 8275 «—SfRsr 65
IRQ 8275 «—3 85T 55
5p §
zs .
7400
Q -
ADDRESS 0
DECODE 4
PROM
CE 2716 JIK
. A
828123 DU CS 2114 HIGH 4TK
[= V
4.7K
Ic3 I, TS 2114 LOW
I 8275 WR
0y 8275 DACK
05 L 2 » CS 8255
[8275 C§
o it
7 8275 RD K
32 x 8 PROM
’ +5
41K

Appendix 7.1
CRT TERMINAL SCHEMATICS

AFN-01304A

APPLICATIONS

Ice Ic7 Ic8 ico

o 2114 s 2114 & 218 B 2114

1y 55 5 Aa Ag Az At Ag Ag Agl0, 1010310 WE 7 Ag A Ag Ay Ay AAg Ag Agl0y\0pI03104WE 87 Rg A5 Ag Ag Ag Ay Ag Ag Ag10; 105103104 WE A7 Ag Ag Ag Ag Ag Ay Ag Ag Agl0; 10103104 WE
INANdACSHEE BRI !71234751515|5m|3|z”u BRAAEIEEEDERLE TERFTF 16115]14 11312, Trto
A - A

Ag
— A1
A2
A3
— Aﬂ
As

— As
. A

By
> Dy
02
D3
Y
Dg
Dg
— >,

> ag
Ag

Ao
. —> Ay

A1z
Ay3
Aa
ﬁs

> > —_— ﬁ

7404 . 7404

ol 1] 6)5] 4l 32 7|20 3| 2| 5l 6] 7} o
Ty 0; 0, 05 5 05 05 7] , 00, 078504050507,
g 01 es fo— L) oS

K Wy w 8253 : : m 8251A . .
- 1c20 | 10}, 1C19 "
K GATEO[«——PG 21C 14 10 [SERIAL OUT

7% 18 oate 2 wroft—wpa2iC 11

3
+5 2 (LK 0|[-«—— PG 2IC 10 TO RESET OUT —— eser #X0 |“—— SERIAL IN
— 8085 :

+5 WA T et : —UT
e

CLK 2
' 8

TOIC 10 TO CLK OUT
8085 CLK +~ 2 ON 8085

821

APPLICATIONS

Ag SHEET 1
Aq SHEET 1
Dg SHEET 1
D4 SHEET 1
D, SHEET 1
D3 SHEET 1
D, SHEET 1
Dg SHEET 1
Dg SHEET 1
D SHEET 1
RD SHEET 1
WR SHEET 1

27 |28 f20 30 [31 32 |33 {34
|o; o5 05 by D3 By Dy Dgf

ambs
, g
Set > Toosic3
18 pey L
> 15]pe, . NE
(6 18 pc, . Ic17 8 7D RESETOUT 8085 -
o b, 8255A-5 Pag |8 ~ Rg
o 13 b, py 2 ' AL,
o 12] e, b, |20 ALy -
>] M pa, |2 g
o L] iy L ALy
BAUD RATE SENSE pog |2 ALy
= hmoEms s e “
SWITCH — : re; |2 o ' ALy
= [pag Py Ay Pag Pay Pag PAg Py

IEEEREEY

Slg SLy SLp Slg SLg Slg Slg Sig

Voo

- KEYBOARD
KEYBOARD SCAN LINES
RETURN LINES
Appendix 7.1
CRT TERMINAL SCHEMATICS

822 AFN-01304A

APPLICATIONS

11.34 MHz

g
2
7404 : 7404
pOT OSC
DOT cLock|
IC 10 7474
10
Pl P PRESET IOo—&
, .
=12 9
19 118 hi7.{16 |15 [14 13 [12 IC15 7| tC16
5705 05 0, D3 0; 0 O TLK
il) . oeg 22 o og—"4u "
d S N [b
10163 07 ~—d] RD I s P Ll
o [LI ozl
T0 163 D3 ~— WR P B 2716 0y LCI] N 74166
2 - 4 5 4 TO cCLK
ogy Ay 05 c > 75
T01C3 06 <€—224 ¢S oy [2—5]a; - o5le—3f »
8275 0
Ic13 2 6 p, 0, 17__2]a 6y TOCILKOD
§ ¢ z — 8253 PG 1
T0 IC3 D4 -—@ DACK u 1T
p—4
10161 RST 65 ~e—2] oA . Oy
13
: T 4 2 TOGATED
HRTC 0 ‘
0161 BST 55 ~—211R . b G 8253 PG 1 +5
VATE]
) 37
TEN 1K
101110 PIN 5 < oLk LTE -
22 oy of &—» VERTICAL DRIVE
1613

12 n
I P
o
13 "
17} (1) o,
it
74175
ouTo iC14
8253 PG 1 CRT TERMINAL

VIDEO OUT

HORIZONTAL
DRIVE

823

APPLICATIONS

Appendix 7.2
KEYBOARD INTERFACE

The keybdard used in this design was a simple

unencoded ASCII keyboard. In order to keep the - -

cost to a minimum a simple scan matrix technique
was implemented by using two ports of an 8255
parallel I/O device.

When the system is initialized the contents of the

eight keyboard RAM locations are set to zero. Once

every frame, which is 16.67 milliseconds the contents
of the keyboard ram is read and then rewritten with
the contents of the current switch matrix. If a non-

action is taken. By operating the keyboard scan in
this manner an automatic debounce time of 16.67
milliseconds is provided.

Figure 7.2A shows the actual physical layout of the

- keyboard and Figure 7.2B shows how the individual

keys were encoded. On Figure 7.2B the scan lines are
the numbers on the bottom of each key position and
the return lines are the numbers at the top of each
key position. The shift, control, and caps lock key

-~ were brought.in through separate lines of port C of

zero value of one of the keyboard RAM locationsis -

found to be the same as the corresponding current
switch matrix, a valid key push is registered and

the 8255. Figure 7.3 shows the basic keyboard
matrix.

In order to guarantee that two scan lines could not
be shorted together if two or more keys are pushed
simultaneously, isolation diodes could be added as
shown in Figure 7.4.

/
! @ | # $ % AN & * () —)
|41 2|3|a|s|ef|7|8|efo]|-]|=]\|BS[omx
. 1 .
m|{Q|W|[E|R|T|Y|U|[1I]|]O]|P % | LF |
CAPS : " nor
el [k | A | S| D|F|G|H K it || lom| "
NoT |. \ <|>1? NOT
usen |[SHFT| Z | X C [V| B .N M , - /| ST usen
SPACE BAR
Figure 7-2A. Keyboard Latht .

7 7 7 7 7 7 7 2 0 0 0 0 0 0 0 0
0|1 2!3|a|s5]|]6|]7|o0|1]{2]3]a|]5]|6]7
6 6 6 6 6 6 5 1 1 1 111 1 1 1
0 1 2 4 5 6 0l o0 1 2 3 4 5 6 7
PORT | PORT | 4 6 5 5 5 5 2 2 2 2 2 3 2
C C 1 3 4 5 6 7 0 1 2 3 4 5 6
-4 fpoRT | 4 4 4 1 4] 4] 4 3 3] 3| 3 |porr| 3
olc|l2]3|4a|s5{6|7]| 0o 1] 2 ¢t | 6
5
3

TOP NUMBER = RETURN LINE
BOTTOM NUMBER = SCAN LINE

Figure 7-2B. Keyboard Encoding

824

AFN-01304A

APPLICATIONS

CONTROL

Appendix 7.3

ESCAPE/CONTROL/DISPLAY CHARACTER SUMMARY

DISPLAYABLE

ESCAPE
CHARACTERS CHARACTER SEQUENCE
op . 0 0, o, |1, |1 1 0. 0 1 1, 1 1
BIT % Yo, 10 (%1 [Yog | "0y {19 |41 O1p - 1 % 0, 19 P
@ |. P
0000 | NuL© | s | ¢ |@ | P
‘ ;
A (DCIH Q
goot | sow vl lalalala A
8 R
0010 | sTX DC2 “la2]e|r|8]|R i 8
Cc . S R
0011 ETX - | De3 # |3lc|s|c|s]|: -
o | T e -
0100 | EOT DC4 s [alo] T|D}T -~
E U
o101 | ena NAK w|s{e|ul|lEe]u CLR
F v :
o110 | Ack = |syN &a|ls|Flv|]F]v
0111 “t7le|wlelw
1000 (|sfr] x|H]|x HOME 4
1001 yle i | v]y
1010 . Jlzlalz EOS |
1011 ikl 1}« EL
, L /
1100 FF FS o<l v
1101 -1 =l m])wm
N A
1110) RS s wl oAl w ,
(o]
1111 s1 us -| 7| 2fjo| -]o
NOTE:

Shaded blacks = functions terminal will react to. Q(hers can be generated but are ignored up on receipt.

825

AFN-01304A

APPLICATIONS

3

SCAN LINES

4

-

BREAK

/

10K

|

o

DELETE

-/

10K

YRR

+
o

+
L

7

-
Qo
3

PERIOD
—

SH

/
/
-/
’_SLA

/

10K

RETURN LINES
X

"/
A z X

—/ T

10K

-
&
L

IU '\IO

Y SPACE
: —

+
-
[~
F

< .
T
»

-
(=]
F

o

Y

U URUEAS

10K

Figure 7-3. Keyboard Matrix

Appendix 7.4
PROM DECODING

As stated earlier, all of the logic necessary to convert
the 8275,into a non-DMA type of device was
performed by a single small bipolar prom. Besides
turning certain processor READS into DACKS and.
WRITES for the 8275, this 32 by 8 prom decoded
addresses for the system ram, rom, as well as for the
8255 parallel I/O port. ’

Any bipolar prom that has a by eight configuration
could function in this application. This particular
device was chosen simply because it is the only “by
‘eight” prom available in a 16 pin package. The
connection of the prom is shown in detail in Figure
7.5 and its truth table is shown in Figure 7.6. Note
that when a fetch cycle (M1) is not being performed,
the state of the SOD line is the only thing that
determines if memory reads will be written into the
8275’s row buffers. This is done by pulling both
DACK and WRITE low on the 8275.

Also note that all of the outputs of the bipolar prom
MUST BE PULLED HIGH by a resistor. This
prevents any unwanted assertions when the prom is
disabled.

826

SCAN LINES

10k
—AWY 5V

RETURN LINES

10k
#vw 5V

Figure 7-4. Isolating Scan Lines With Diodes

AFN-01304A

APPLICATIONS

(nd-Wr)-ATa<—|

ENABLE
Dy —» CE2me
SOD «— A Dy b——» CE2114
(8085) 0800H-OBFFH
Alp — 1A Dy |—» CE2114
(8085) OCOOH-OFFFH
Ay — J A D3 fb—> WF
(8085) : 8275
Atz — 14 Dy ——» DACK
(8085) 8275
M A D5 |—» s
(8085) © 8255
M;=5¢9°Sy Dg —» Cs
8275
Vec ———] Vee
b7 |— AD
GND -——] GND 8275
Figure 7-5. Blpolar Prom (825123) Connection
L4
o
EEJ 18 8 <D 2 I 4
- 2R g e R XTITE
5 < B I S
A4 A3 D7 Dé D5 D4 D3 D2 D1 DO

N NN el e Yoo il o Rete Rl =Rk el X=]

Figure 7-6. Truth Table Bipolar Prom

Y Y oY o R o B N o Yo N o N - R o R e Y = Y o k=R = N =X =] ,:S A1l
- 0O~ 00~ 200~ 20022002004 200==200 = A0

- - A e e 00000000 S 2L L L 100000000 P

-0+ 00—+ 0—-0—+0 -0 20—+ 02020+ 02020~ 0~=20-0)O> Sod

A O O b e ke ok L A OO btk

L A L OO OO = 3 i B A AU OO ke

OO = mt et bt ot 2 A DO OO b bk kb bk h 2 e

[P U T N o JE U o SO S GG G G G G G PG G Gy

B L A O OO O O A b h ko A (OO bk mh mk mh ko

o A OO e e S (OO b b s RO

P N S D S

O N N e X X o= T S SO NN S e W)

Appendix 7.5
.CH'ARACTER_ GENERATOR

As previously mentioned, the character generator
used in this terminal is a 2716 or 2758 EPROM. A
1K by 8 device is sufficient since a 128 character 5 by
7 dot matrix only requires 8K of memory. Any
“standard” or custom character generator could
have been used. '

The three low-order line count outputs (LC0-LC2)
from the 8275 are connected to the three low-order
address lines of the character generator and the
seven character generator outputs (CC0-CC6) are
connected to A3-A9 of the character generator. The
output from the character generator is loaded into a
shift register and the serial output from the shift
register is the video output of the terminal.

Now, let’s assume that the letter “E” is to be
displayed. The ASCII code for “E” is 45H. So, 45H
is presented to address lines A2-A9 of the character °
generator. The scan lines will now count each line
from zero to seven to “form” the character as shown

" in Fig. 7.7. This same procedure is used to form all

128 possible characters. -

It should be obvious that “custom” character fonts
could be made just by changing the bit patterns in
the . character generator PROM. For reference,
Appendix 7.6 contains a HEX dump of the
character generator used in this terminal.

45H = 01000101
Address to Prom = 01000101 SL2 SL1 SLO

= 228H - 22FH
Depending on state of Scan
lines. e '

Character generator output

Rom Address Rom Hex Output Bit Output”
228H 3E 01234567

229H 02
22AH 02
22BH OE
22CH - 02
22DH 02
22EH 3E
22FH 00

Bits 0, 6 and 7 are not used.
* note bit output is backward from convention.

Figure 7-7. Character Generation

8-27

AFN-01304A

' APPLICATIONS

Appendix 7.6
HEX DUMP OF CHARACTER GENERATOR

.lﬂ@ﬂﬂﬂﬂﬂﬂlﬂﬂﬁﬂﬂﬁﬂﬂﬂZZZZ@QZZ@@Z@GGBZGQ%G@EF
:10001033003003030300000000300333030023320E
:102920920222030302303003830333339080036303D0
:109093020303030009030830300020003030303893CA
: 1030402009220000200023000302300380330033380

: 1093509323023003023033003033003303030203003AF

: 18009603922339320300003028000003200303003380292
:10907023200230803823003302300300333030020089
.lﬂﬂﬂBﬂZZﬂﬁZﬁﬂﬁ@ﬂﬂﬂ@ﬂﬂﬂQGZGGZGGGZEEZG@GGZ7G
lﬂ@ZQQEGQZZGGQQGZGGGZ82A1C681C2A685300ﬂﬂ
: AGAD03000320092000320300000023300821 52
.lﬂZZBBGﬂﬂﬂZﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬁﬂﬂﬂﬂ@ﬂﬂﬂﬂﬂ@ﬂ@@ﬁ40
lﬂﬁﬂC@ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂGﬂﬂﬂ@ﬂﬂ@@ﬂﬂB@ﬂﬁﬂ@ﬂ@ﬂﬂﬂﬂﬂ30
A33DAAA3RANI 2RI BB AB3BBBBABGARAD
ﬂﬂ@E@ZﬂﬂﬂﬂG@@ﬂ@ﬂﬂﬂﬂﬂﬂGQ@EQGZZGZZGG‘0)ﬂﬂlﬂ
29FA0A3230732028309 ﬁﬁ@ﬂﬂ@ﬂﬂﬂﬂﬂﬂ@ﬂﬂﬂ@]ﬂﬂﬂﬂ
(3031000230020300320073337338289338932230824BF
23118 50141414@@@50%50@014143El43E1414ﬂﬂC3
'180120293283CAA1C281EARINNH261038243230335D
lﬂﬂl3QZEZ4GA@AG42A122CﬂﬂﬂBﬂ8ﬂ8@QﬂGZZﬂﬂZ@23
:11099140200334023202 243330081 32022201 3080901
: 10315323382A1CA81C2AA33039 3338 3E080833829D
: 100153323202 3033003 30804 802270 3CH30AIAA 3F
:100173332000393230923180207 201 3082432030229
:108180991C22322A26221C30083CB39838281CAF21
712199231C22281CP2923E003E 24101320221 CI0BF
21A002101814123E1913303£2021E2023221C03C7
21B02038734021E22221CAA3E20109894 34049901
@1C32031C22221C22221CHR1C22223C23132E3279
21DA23332003020733873230730033283 3332823343
BlEAZ31098240204081379203303EA3IEAF223259
21F20240810201098040031C22201 3787483030821
2203831C222A3A1A023CA0B081 4222235222201 2
2210881E2424lC2424lEGZlC22@202@222lCﬂ074
7220081E242424242415023E02023E0202 38A%4C
323039A3E02020E020202093CA2023A22223CAA5E
22 3852222223b222222@01C9828@8@8981C0@44
2250297326282320221C23221 20A053A1 2223 9EE
292630203292023202923EA822362A2A2222220% 32
:1082742322262A322222220301C22222222221C3292
11002893318 22221E92020208%1C2222222A122C00FE
:1092903A1E 22221 EAA1 2220%3C02621C 20281 EGIES
-t 1032A09P3EA308389828333%222222222222 1CA3ES
:1822820022222222221 40809222222222A3522005E
:1092C000222214081422220922222214783833830E4
:1092D0233E201208340235291CA40349434941CA318
:1092E092332204031029093338202320232038003C0
:10732F2333381C2A0308787820399290322303807E12
:12030202059911033099930302083C233C223CAR4E
:1023102332021A2622221E0020300 38343404 380338
21033202920202C3222223CH20007338243C848373058
:1098330903824040E94 03434 33300BBC22223C 2(3CAB
B73400302821A26222222 303807373 80828743973048
(2352302026232 320A42418020222]1 20A162203C3
$03633383380833283399309998362A2A2222077F
003 703033261A2622222200093318242424183938
: 1093803202321 E22221E42032300931C22223C23202D
'10239233033331A26020202323390333418201CA787
A23A03208981CA80838922013708222222324CA395
: 1223800239702222221 463330333 22222A3E1 407
:1803CA33302322140814220309022222223C20383F
:1023D330A3A993E109304 35671888890388891 93 22F
:1033E20328283808332838483C9291 2194918D7451
: 1903F 33339938C233030133202033003228333008395

. o0 0 TR TRYR T
b b }_4'_45—!._4.—1._4
[

r—'l—‘)—'l—-‘l—‘l—‘)—dl—'l-‘l—-‘i-'
VRS DI

os 00 0n 0o 90 0o us
D e o it

828

AFN-01304A

APPLICATIONS

Appendix 7.7
COMPOSITE VIDEO

In this design, it was assumed that the monitor
required a separate horizontal drive, vertical drive,
and video input. However, many monitors require a
composite video signal. The schematic shown in
Figure 7.8 illustrates how to generate a composite
video signal from the output of the 8275.

The dual one-shots are used to provide a small delay
and the proper horizontal and vertical pulse to the
composite video monitor. The delay introduced in
the vertical and horizontal timing is used to “center”
the display. VR1 and VR2 control the. amount of
delay. IC3 is used to mix the vertical and horizontal
retrace and Q1 along with the R1, R2, and R3 mix
the video and the retrace signal and provide the
proper DC levels.

\

‘:J < I—:
sk S~) $ax 10K > 50K
9 7415221 74L$221 1

HHTc‘\ 2By 20 Hza e,
{ VRTC
7 AY
L 1 I iH Hi‘ v t
2kS =1 = S22
b3 l‘lmpF 001,F AuF 055
14] .. dsle 14
X CX X X
Y] il —“_‘ LY Wiy
. al 10
Q4 Bz "“Q[a_ B
e
sson 2naso4
1KQ
5 ———AA—¢
viDEo ——aa—1 7S composite
- VIDEO
1500 outr

Figure 7-8. Composite Video

Appendix 7.8
SOFTWARE LISTINGS

ISIS-II 8088/8985 MACRO ASSEMBLER, X108

LO0C 08g SEQ SOURCE STATEMENT
1 SMOD85 MACROFILE
<2 sNO DMA 8275 SOFTWARE ALL I/0 IS MEMORY MAPPED
3 ;SYSTEM ROM $2a@gH TO @7FFH
4 7SYSTEM RAM @880H TO @FFFH
5 ,8275 TE_106#H TO:13FFH
[;827 RFAD 1430d TO 17FFH
7 78255 READ/WRITE 18pH TO 1FFF
8 ;8253 ENABLED BY Al4
9 :8251 ENABLED BY AlS
1804) E 18@0H ;8255 PORT A ADDRESS
1801 11 PORTB - E 18@1H 78255 PORT B ADDRESS
1882 12 E&j 1862 38255 PORT C ADDRESS
1893 13 CNWDS5 E 1 $8255 CONTROL PORT ADDRESS
Agol 14 USTF EQU #AGGIH ;8251 FLAGS
AQ0Q 15 Us EQU PAGAGH $8251 DATA
6089 16 CNT@ EQU 6088H 78253 COUNTER @
6981 17 CNT1 EQU 60018 ., ;8253 COUNTER 1
6002 18 CNT2 [6002H % 78253 COUNTER 2 -
6003 19 CNTM 6003H 78253 MODE WORD
1601 28 CRTS El 1601H 18275 CONTROL ADDRESS
1003 21 CRTM EQU 10001 $8275 MODE ADDRESS
1401 22 INT75 E 14014 ;8 PT C
2800 23 TPDIS 28091 ;TOP OF DISPLAY RAM
gr8a 24 BTDIS E AF8oH ;BOTTOM OF DISPLAY RAM
OFDJ 25 LAST E F| ;FIRST BYTE AFTER DISPLAY
0018 26 CURBOT E 8H ;BOTTOM Y CURSOR
9059 27 INGTH E A58H ;LENGTH OF ONE LINE
OFEQ %g STPTR E @FERH ;LOCATION OF STACK POINTER
’
30 ;START PROGRAM
g% ;ALL VARIABLES ARE INITIALIZED BEFORE ANYTHING ELSE
ra
000 F3 33 DI ;DISABLE INTERRUPTS
2001 31EAQF 34 LXI P, S ;LOAD STACK POINTER
9094 210828 35 LXI - fep1s :LOAD HsL WITH TOP OF DISPLAY
2007 22E30F 35 SHLD TOPAD ;SET 'I‘OP = TOP OF DISPLAY
(Ga0A 22E89F 37 SHLD CURAD -STCRE THE CURRENT ADDRESS
38 A, 394 ;ZERO A
B00F 32E10F 39 STA chr $ZERO CURSOR Y PQINTER
2012 ar 40 . STA CURSX #ZERQ CURSOR X POINTER
2615 32EBOF 41 STA KBCHR $ZERO KBD.CHARACTER
2018 32E70F 42 STA USCHR ;ZERO USART CHAR BUFFER
0091B 32EAQF 43 STA KEYDAN ;ZERO KEY DOWAN

829

AFN-01304A

APPLICATIONS

@BLE 32EDEF 44 STA KEYOK ;ZERQ KEYOK
9621 JEEGF 45 3TA BSCP - $ZERO ESCABE
#9824 39805 4 P LPKBD :JUMP AND SET EVERYTHING UP
Ty R A
4 : .
58 ' :READ THE KEYBOARD. THIS ROUTINE IS EXECUTED ONCE EVERY
3l 716.667 MILLISECONDS.
202C 53 ORG @92CH
882C c36701 5 JmMp FRAME
56 $THIS ROUTINE IS LOCATED AT THE RST 6.5 LOCATION OF THE
57 ;8085 AND IS USED TO LOAD THE DATA TO BE DISPLAYED INTO
55,8 : iTHE 8275, THIS ROUTINE IS EXBCUTED ONCE EVERY e MICROS ECONDS .
2234 0 brg 304
2934 F5 61 POPDAT: PUSH PSW ;SAVE A AND FIAGS
2035 E5 62 PUSH H " tSAVE H AND L
9836 D5 63 BUSH D i{SAVE D AND E
@837 210008 .64 LXI H, #eooH $ZERO H AND L
gp3A 39 65 DAD sb #PUT STACK POINTER IN H AND L
9938 B 66 XCHG *PUT STACK IN D
933C 2AESAF 67 LHLD CURAD iGET PO
@a3F F9 68 SPHL : ;PUT CURRENT LINE INTO SP
2949 3ECe 49 MVI A,BCOH $SET MASK
0042 3@ % SIM -
yil REPT (LNGTH/2)
72 POP i
73 E
@943 E1 73+ POP H
3944 E 75+ POP H
9045 E 76+ POP H
9046 E 17+ POP H
2047 E 78+ POP H
@048 E 94 POP H
#949 E1 83+ POP H
#04A E) 81+ POP H
@348 E 82+ POP H
#94C El 83+ POP H
234D E1 84+ POP H
@94E EI 85+ POP H
@04F E 86+ PP H
205¢ E 87+ POP H
@851 E 88+ POP H
2857 E 89+ POP H
953 E o+ POP H
9054 E 91+ POP H
2855 E 92+ POP H
20956 E 93+ POP f
@857 £ 93+ POP H
2958 E1 85+ POP H
8859 E 96+ POP H
@85A E 97+ POP f
@858 E a3+ POP H
225C E 99+ POP [
@95D E 100+ POP H
@B5E E) 101+ POP f
@35F E 182+ POP .
9860 E 183+ pPOP H :
a6l E 181+ POP H
2062 E 1d5+ POP H &
@063 E 106+ POP H i
2664 El 187+ POP .H
9865 EL. 188+ POP H
@066 E 199+ POP 4
@067 E 11+ POP H
2968 E 111+ POP H .
2069 E1 112+ POP H .
96A El 113+ POP H
@068 gF 112 RRC ;
#86C 30 115 SIM , :GO BACK TO NORMAL MODE
396D 210008 116 LXI H, 6eAeH :ZERO ML
8d79 ‘39 117 sb ADD STAC
118 XCHG , *PUT STACK IN H AND L
2872 F9 . 119 SPHE, FRESTORE ‘STACK
@973 210a0¢ 128 LXI H, LAST PUT BOTTOM DISPLAY IN H AND L
0073 A 7 1% W AD 'S“u%"u?&'?f%%‘éa N A
20
0879 Coaagn 1% SNg E;rrx ITENOT TRAdE
NZ :
go7c 78 125 MOV AE }BUT LOW ORDER IN A
9370 BD - 126 cMp L ISEE, IF SAME AS L
@a7E C28400 127 JNZ KPTK FIF NOT [EAVE
208) 218998 128 LXI H,TPDIS - LOAD H AND L WITH TOP OF SCREEN MEMORY
@984 2IEBOF 129 KPTK: - SHID - C(RAD 'BUT BACK CURRENT ADDRESS
3E18 138 - A,18H $SET" MASK
i3 siM. 3OUTPUT MASK

8-30 ’ AFN-O1304A°

APPLICATIONS

2p8A D1
2988 E1
6088 Fl

#98E C9

2098 32EFQF
A098 32FQQF
@@9E 32F10F

3E8B
@86 320318

20689 2101A0
3688

G@BE 3600
06Co 3640
28

23C3 36EA
29C5 3625

BEC7 3E32
22C9 320369
3E32

A0CE 320060
3E@2
20D3 320060

#@D6 CDDCAJ
#9D9 C3F9420

0Q9F7 12
AoF8 C9

209

NNNNNEN
YT at

N
[t
@~

BYPASS:

LPKBD:

‘LOOPF 2

STBAUD:

POP D JGET D AND E

POP H iGET H AND L

POP PSW ;GET A AND £

EI sTURN ON INIERRUP’I‘S
RET ;GO ACK

: ,)
;THIS IS THE EXIT ROUTINE FOR THE FRAME INTERRUPT
2

MVL A,18H ;SET K

SIM ;OUTPUT THE MASK

POP B » ;GET B AND

POP D ;GED D AND E

POP H 7GET H AND L

POP PSW 'GET A AND FLAGS

BI . 'ENABLE INTERRUPTS
RET °GO BACK

;THIS CLEARS THE AREA OF RAM 'I'HAT IS USED
FOR KEYBOARD DEBOUNCE.

;
&1a
STA
STA

SHCON
RETLIN
SCNLIN

'ZERO SHIFT CONTROL
0 RETURN LINE
°ZERO SCAN LINE -

:THIS i‘OUI‘INE CLEARS THE ENTIRE SCREEN BY PUTTING
-SPACE CODES (2¢H) IN EVERY LOCATION ON THE SCREEN.

fxr H, TPDIS
LXI 8 [AST
MVI M, 28H
INX H

MOV A,H
cMP B

JNZ LOOPF
MoV A,L
cMP ¢
JNZ Loopr

’

$8255 INITIALIZATION
MVT A,B88H
STA CRWDS5
; .
8251 INITIALIZATION
fx1 H,USTF
MVI M, 83H
MVI M, 36H
MVI M, 4eH
NOP

MVI M, BEAH
MVT M, B5H
8253 INITIALIZATION
MvI A,324
STA chTM
MVT A,324
STA CNTa
MVT A, 80H
STA NTQ
CALL STBAUD
Jup IN7S

; 'cI)‘HIS ROUTINE READS

im
ANI
STA

RLC
LXI

THE BAUD

;PUT TOP OF SCREEN IN HL
;PUT BOTTOM IN BC

'PUT SPACE IN M

; INCREMENT POINTER
iGET H

'SEE IF SAME AS B

'éF NOT LOOP AGAIN

'SEE IF SAME AS C
; IF NOT LOOP AGAIN

;MOVE 8255 CONTROL WORD INTO A

;PUT CONTROL WORD INTO 8255

;GET 8251 FLAG ADDRESS
;DUMMY STORE TO 8251
sRESET 8251

'RESET 8251

JWAIT
;LOAD 8251 MODE WORD
;LOAD 8251 COMMAND WORD

-CONTROL WORD FOR 8253
#PUT CONTROL WORD INTO 8253

THE 8255 AND LOOKS UP THE NUMBERS NEEDED TO [D
i THE 8253 TO PROVIDE THE PROPER BAUD RATE.

PORTC
FH
BAUD

H,BDLK
D, 824

g,

D,CNTM
A,986H

oo

a,M

M

[whderlw]

EAD BAUD RATE SWITCHES
'S'H{%P OFF 4 MSB'S

MOVE BITS OVER ONE PLACE
:GET BAUD RATE LOOK UP TABLE
+ZERO D

;PUT A IN E

*GET OFFSET

+POINT DE TO 8253

iGET om'ROL WORD
:STORE IN 8253

iPOINT AT $2 COUNTER
:GET LSB BAUD RATE

:PUT IT IN 8253

;POINT AT MSB BAUD RATE
:GET MSB BAUD RATE

:PUT IT IN 8253

GO BAC

RATE SWITCHES FROM PORT C

AFN-01304A

APPLICATIONS

4
a4

SENRSSFAEHESSSRTINTLATNCUVRIR|RAS®

[STST AT

MW|WRS

10F
112

EHEBRRNEAESRG
[N e]]

SRESHEBERR
3

1 4B
4E

8C

20F9 210116
C ggﬂﬂ

2E78F

ZAE30F
22E8@F

3Ag218
E6OF

47
3AECEF
B8
C4DCag

C38F@9

IN75:

SETUP

RXRDY:

KEYINP:

KEYS:

OK7:

;8275 INITIALIZATION
fx1 H,CRTS . .

MVI M, B0H ;RESET AND STOP DISPLAY

DCX H tHL=1000H

MVI M, 4FH ;SCREEN PARAMETER BYTE 1

MVL M, 58H SCREEN PARAMETER BYTE 2

MVI M,89H ;SCREEN PARAMETER. BYTE 3
M,d ;SCREEN PARAMETER BYTE 4

INX H ;HL=1091H

CALL LDCUR ;LOAD THE CURSOR

MVI M, BEQH PRESET COUNTERS

MVI M, 234 -START DISPLAY

'THIS ROUT'INE READS BOTH THE KEYBOARD AND THE USART
g?%ﬁs SPRE'?'PER ACTION DEPENDING ON HOW THE LINE-LOCAL

fvr A,18H ;SET MASK
SIM ;LOAD MASK
EI :ENABLE INTERRUPTS
sREAD THE USART
RIM. ;GET LINE LOCAL
ANI 8gH :IS IT ON OR OFF?
INZ KEYINP :LEAVE IF IT IS ON
LDA USTF #READ 8251 FLAGS
ANI g2 :LOOK AT RXRDY
INZ OK7 - ; IF HAVE CHARACTER R Q0 TO WORK
LA KEYDAN . *GET KEYBOARD CHA
ANI 80H ;IS IT THERE
JNZ . KEYS ;1:-‘ KEY IS PUSHED LEAVE
MVT A, 80H . $ZERO A
STA KEYOK :CLEAR KEYOK
JMp Y ;Looe AGAIN
KEYOK $WAS
MOV C,A " $SAVE A 1 C
LDA KBCHR v - ;GET KEYBOARD CHARACTER
cMP c ;IS IT THE SAME AS KEYOK
Jz RXRDY iIE SAME LOOP AGAIN
STA KEYOK +IF. NOT SAVE T
STA USCHR :SAVE IT
RIM - :GET LINE LOCAL
ANT 8gH WHICH WAY
Z iLEAVE IF L
JMp CHREC ;TIME TO DO SOME WORK
LDA USTF - {GET USART F
ANT gi4 iR TO TRANSMIT?
Jz ;LOOP IF NOT READY
LDA USCHR 7GET CHARACTER
STA USTD :PUT IN USART
JMP SETUP . iLEAVE
LDA USTD : iREAD USART
ANT g7FH ;STRIP MSB
STA USCHR sPUT IT IN MEMORY
JMp CHREC :LEAVE

FRAME:

i THIS ROUTINE CHECKS THE BAUD RATE SWITCHES, RESETS THE
;SCREEN POINTERS AND READS AND LOOKS UP THE KEYBOARD.

Pusy psw ;SAVE A AND FLAGS

PUSH H *SAVE H AND L

PUSH D SAVE D AND E

PUSH B : . ;SAVE B AND C

LDA INT75 {READ 8275 TO CLEAR INTERRUPT

$SET UP THE POINTERS
ftatp TopaD ;LOAD TOP IN H AND L

SHLD CURAD :STORE TOP IN CURRENT ADDRESS
$SET up BAUD RATE

tm PORTC READ BAUD RATE SWITCHES
ANI #FH {STRIP OFF 4 MS8'S

MOV B,A ;SAVE IN B

LDA BAUD GET BAUD RATE

cMP B iSEE IF SAME A!

ONZ STBAUD :IF NOT SAME % scmsfmmc
+READ KEYBOARD

Lo KEYDWN ;SEE IF A KEY IS DOWN
ANT 404 iSET THE FLAGS

INZ KYDOWN :IF KEY IS DOWN JUMP AROUND
CALL RIX8 . $GO READ THE KEYBOARD

JMP BYPASS LEAVE

832 AFN-01304A

_ APPLICATIONS

:

[
Rt bt bt ot ot ot s SRR)

At L) L (adad Ll L Ll
IO D~ I LW -]

VRSV CTRR

[SESTTTT
brfrivintet

H, SHCON
- pRTC
Seh
2eA
PORTS .
A
SAVKEY
A,B
ey
KEYDWN

M, A

H

M,B

A, 40H
KEYOWN
A,00H
KE

YDWN
BYPASS
H, SCNLIN

AM
PORTA.

H
FORTB
M

YDAN
" BYPASS

'-IFTHE:CAPLOC

;POINT HL AT KEYBOARD RAM
{GET CONTROL AND SHIFT
IN MEMORY

LEXE KEY DOWN
:POINT AT RETURN LINE
PUT A BACK
7SAVE RETURN LINE IN MEMORY
'POINT H AT SCAN LINE
'SAVE SCAN LINE IN MEMORY

SET A
;SAVE KEY DOWN
;sLEA

;SAVE

;SET A

;QUT! A

;SAVE A IN B

sREAD KEYBOARD

;1 T A

;SET THE FLAGS

; LEAVE KEY IS DOWN
;GET SCAN LINE BACK
;ROTATE IT OVER ONE
;D0 IT AGAIN

sZERO A .

;S

i

B
2
27
%

'GET READY TO ZERO B
;ZERO B

-RO‘I‘A’IE A

;DO_IT AGAIN

-POINI‘ H AT SCAN LINES

;GET SCAN LINES
;GET READY TO LOOP

. $START C COUNTING
;ROTATE

A
;JUMP TO LOOP
'GET RETURN LINES
MOVE QVER E

'MOVE OVER TWICE
;MOVE OVER THREE TIMES
RETURN LINES

'S’IRIP CONTROL

-GET LOOKUP TABLE
'GE'I‘ OFFSET .
GET CHARA(

'PU'I‘ CHARACTER IN B

$GET PORTC
'S‘lRIP BIT
:CAPS_[OCK

IS PUSHED THIS RQUTINE SEES IF

BUTTON
THE CHARACTER IS BETWEEN 61H AND 7AH AND IF IT IS THIS

AFN-01304A

APPLICATIONS = -

C32302

3E8@
Bg
E6BF

47
C3l1g@2
7 3E40

4
C31142

CA9743

C30F@1

B B P i B o 0 o 0 o B

st ot et et bt ol 53 51 R
NULBRWNHRW D ~INUN

417

SSSRRRR
DB~ W

SOGEABABESE
BIRALLELE

o P B
o) To ¥ Yo IV
WSRO

CAPLOC

CNTDAN:

CHREC:

ESSQs

sROUTINE ASSUMES THAT THE CHARACTER IS LOWER CASE ASCII
sAND CTER TO

D SUBTRACTS 20H, WHICH CONVERTS THE CHARA
,UPPER CASE ASCII

;GET A B

tHOA BIG IS IT?

'LEAVE IF IT'S TOO SMALL
;IS IT Too BIG
'LEAVETli TOO BIG

;ADJUS
$STORE THE KEY

THE ROUTINES SHDAN AND CNTDAN SET BIT 6 AND 7 RESPECTIVLY

MoV A,B
CEI 60H
Jc STKEY
CPI .7BH
JNC STKEY
SUL 20H
JMP STKEY
iIN THE ACC.
A,80H
ORA
ANT @BFH
MOV 'B,A
JMP R
MVI A, 40H
ORA B
MOV
JMP sér

sSET BIT 7 IN A

'OR WITH CHARACTER
sMAKE SURE SHIE"!‘ IS NOT SET
'PUI‘BIIé‘ BACK IN

:SET BIT 6 IN A
;OR WITH CHARACTER
,GPUI‘ I‘I‘ BACK IN B

'THIS ROUTINE CHECKS FCR ESCAPE CHARACTERS, LF, CR,

-FE‘, AND BACK SPACE

;ESCAPE SET?

'C’) TO LINE FEED
;FORM FEED

gOR TO FORM FEED
:DO A CR

:BACK SPACE
'DO A BACK SPACE
+ESCAPE

;SEE IF CHARACTER IS PRINTABLE
;IF PRINTABLE DO IT
;GO BACK AND READ USART AGAIN

'THIS ROUTINE RESETS THE ESCAPE [OCATION AND DECODES
; THE CHARACTERS FOL T OMMANDS ARE

$THIS ROUTINE MOVES THE

oeH
2P
USCHR
a8

DOWN
45H
CLEAR

CURSY
CURBOT
SETUP

A

CURSY
LOCIR
CALCU

A M
gFon
. SETUP

LOC8a
CLLINE
SETUP

. ING AN ESCAPE. Ci
°CQ‘1PATABLE WITH INTELS CREDIT TEXT EDITOR

{GET CHARACTER
:DOWNN

-MOVE CURSOR DOWN
'CLEAR SCREEN CHARACTER '\
CLEAR THE SCREEN
'CLEAR REST OF SCREEN
'GO CLEAR THE REST OF THE SCREEN
:CLEAR LINE CHARACTER
GO CLEAR A LINE
'CURS UP CHARACTER
MOVE CURSOR UP
-CUR5m RIGHT CHARACTER
MOVE CURSOR TO THE RIGHT
'CURSCR LEFT CHARACTER

E
'H(I‘IE THE CURSOR
;LEAVE

CURSOR DOWN ONE CHARACTER LINE

;PUT CURSOR Y IN
-SEE IF ON BO'I‘I‘OVI OF SCREEN
-LEAVE IF ON B

AFN-01304A

APPLICATIONS

B32CF
@202

32D
92D8
22DB

0L oL W LD

g&%&&&nmm i B B
wawmmwmmmgugmw
QI

368
2368

CDE403

C3gFel-

5 CDAS(4

CDCD@4

C3pFa1

3AELBF
FE@9
%‘ABFBI

D
3C 32E10F
CDB8@3

C39ro1

3AE20F
FE4F

3
‘32E20F

CDB8@3
C30rol

GBI AT

NN B =4 =

a1

geeeeag

D= RO GO ~J OIS LI k= RO 0O IO U LN

CLEAR:

CLRST:

LLP:

0‘;Rl:

CONCL:

CLOOP:

CLRLIN:

UPCUR:

RIGHT:

;THIS ROUTINE CLEARS THE SCREEN.

EaLL . ciscr 199 CLEAR THE SCREEN
JMP~ ' SETUP GO B
-&HlmogrmngcmARs ALL LINES BENEATH THE LOCATION
EaLL cawcu ;CALCULATE ADDRESS ,
GALL ADX . {ADD X POSITION
LXI 8, 4F20H ;UT SPACE AND LAST X IN B AND C
LDA clrsx :GET X CORS(R
cMP B i858 Tr AT D OF LINE
Jz ORI -LEAVE IF X IS AT END OF LINE
INR A MOVE A OVER ONE X POSITION
INX H JINCREMENT MEMORY POINTER
MOV ¥,C tPUT A SPACE IN MEMORY
e e PSR TE A A
LXT B, [AST ;PUT LAST LINE IN BC
X g ‘ ggmr HL TO LAST LINE
cMp .4 tSAME AS H?
Wy aer FLEAVE 1¢ Mot
M Eowew e S
. LXT f, TEDIS iGET TOP OF DISPLAY
LDA CORSY :GET ¥ CURSOR
CeL CURBOT ;IS IT ON 'THE _BOTTOM
Jz SETUP :LEAVE IF IT IS
INR $MOVE IT DOWN ONE LINE
MOV B,A ;SAVE CURSOR IN B FOR LATER
LXI D, INGTH $PUT LENGTH OF ONE LINE IN D
MV M, 8FgH ;PUT EOR IN MEMORY :
MOV A)B ;GET CURSOR Y
CEI CURBOT ;ARE WE QN THE BOITOM
Jz SETUP -LEAVE IF WE ARE
INR A . ;MOVE CURSCR DOWN ONE
DAD D . iGET NEXT LINE
MOV B,A . :SAVE A
MOV A PUT.H IN A
cPt oFd -COMPARE 19 HIGH IAST
INZ CLOOP [EAVE IF IT IS NOT
MOV AL {BUT L IN A
CcPL ‘gban COMPARE 10 LOW [AST
Jnz CLOOP ;LEAVE IF IT IS NOT
LXI H,TPDIS tPUT TOP DISPLAY TN H AND L
JMp cloop :LOOP AGAIN
; THIS ROUTINE CLEARS THE LINE THE CURSOR IS ON.
CALL CALCU -cmcum'm ADDRESS
SHID LOCSS $STORE H AND L. TO CLEAR' LINE
CALL CLLINE ;CLEAR THE LINE
Jup SETUP ;G0 BACK
$THIS ROUTINE MOVES THE CURSOR UP ONE LINE.
ipa CURSY ;GET Y CURSOR
CPI 3o IS IT ZERO
Jz_. SETUP ., $IF IT IS LEAVE
DCR A :MOVE. CURSOR UB
STA CURSY *SAVE MEW CURSOR
CALL ° LDCIR ;LOAD THE CURSOR
JMP SETUP ; LEAVE
THIS ROUTINE MOVES THE CURSOR ONE LOCATION TO THE RIGHT . -
Loa CURSX :GET_X CURSOR
Ce1 4FH IS IT ALL THE WAY OVER?
JNZ NTOVER +IF NOT JUMP AROUND
LDA CURSY :GET Y CURSOR
CBI CURBOT :SEE IF ON BOTTOM
Jz 18 ;IF WE ARE JUMP
B fne G VChe
MVT A, 80H $ZERO A
STA ClRSX :ZERO X CURSOR
CALL LOCIR -LEAD THE CURSOR
éirf% ?:URSX -INCRB“II'%N'I‘ X CURSOR
CALL IDCR = . -LOAD THE CURSOR
JMP SETUP EAVE

$THIS ROUTINE MOVES THE CURSOR LEFT ONE CHARACTER POSITION

835 AFN-01304A

APPLICATIONS

@36E 3AE20F

@38E 32E20F
CDB893
9394 C30Fal

09397 3E80
2399 32B"BF
939C 32E10F
@39F CDB3A3
- @3A2 C36FQL

3E82
@3A7 32EEQF
@3AA C30Fp1

2388 3E89
@3BA 320114
238D 3AE2¢F
93Co 320010
#3C3 3AE1QF
B3C6 320010
@3C9 C9

03CA CDE4043
g3CD 210068

43D3 CDl 564

29
23D8 32E20F
g3D8 32E10F

DE CDB333
A3E1 C30rgl

wN
2]

@3E4 3EFP
@3E6 8618

24
@3E9 210008
B3EC %%SGZB

@5
@3F2 C2EFA3
(o]

3F6 CDECA3
@3F9 C39Fp1

ﬂ3FC 31\3105‘
@3FF FE18
@401 CA5304
2464 3C
9495 32E10F

DANNDND QOY

=1
DB WN RO OIOUNIRW N =R

NNRNNNININOIN
O O~V WIN - SRO 00~

Wb

QAN
B 10 i o o L L) O3 G G
OJANS W= RO DO~

649

LEFT:

HOME:

ESKAP:

CGRT:

FMFD:

CLSCR:

LNFD:

LNFD1:

;GET X CURSOR
;IS IT ALL THE WAY OVER
;ég NQT JUMP AROUND

T CURSOR Y
IS IT ZERO?
IF IT IS JUMP
MOVE %rURSOR Y up

-y ~.- -~

'LOAD THE CURSOR
;ADJUST X CUR)S(CR

SETS THE ESCAPE BIT
;LOAD A WITH ESCAPE BIT
{SET ESCAPE LOCATION

:GO BACK AND READ USART

‘32ERO A
;ZERO CURSOR X
;LOAD CURSOR INI‘O 8275

'POLL USART AGAIN

LOADS THE CURSOR

'PU’I‘ 844 INTO

A
LOAD CLRSOR INTO 8275

-GET CURSOR
°PUI‘ IT IN 8275

iGET CURSOR
;PUT IT IN 8275

;CALL CLEAR

SCRE
,PUT TOP DISPLAY IN HL
PUT IT IN LOC82

;LOAD THE CURSOR
$BACK TO USART

SAVE
'GET LAI'%T X LOCATION

: -THIS ROUTINE CLEARS THE SCREEN BY WRITING END OF ROW
;CHARACTERS INTO

THE FIRST LOCATION OF -ALL LINES.ON

;PUT EOR CHARACTER IN A

$LOAD B WITH MAX Y

;GO TO
;LOAD

-MOVE EOR INTO #
:COINT T

'CONI‘%UE IF NOT ZERO

;CALL ROUTINE
:POLL FIAGS

MAX PLUS ON
HANDLWITHTOPOFRAM
: -MOVE 534 = 8@D INTO D AND E
MEMORY -
;CHANGE POIN‘I‘ER BY 84D
HE _LOOPS

;GET Y LOCATION OF CURSOR

$SEE -IF AT BOTTOM OF
1IF WE ARE LEAVE
; INCREMEN

;SAVE DEW CURSOR

CURSX
CPI A3
JNZ NOVER
LDA CURSY
CeI ggH
Jz SETUP
DCR A
STa CURSY
MVI A, 4FH
STA clrsx
CALL LDCUR
JMp SETUP
DCR
STA CURSX
CALL R
JMp SETUP
; .
$THIS ROUTINE HOMES THE
MvI BEH
STA c{JRsx
STA
AL LN
Jmp SETUP
$THIS ROUTINE
I N
vt A,80H
STA P
JMp - SETUP
’
$THIS ROUTINE DOES A CR
[

MvT A, 8aH
STA clrsx
CALL LDCIR
JMp SETUP
+THIS ROUTINE
MVI A,82H
STA CRTS
LDA CURSX
STA CRTM
LDA CURSY
STA CRTM
RET

| THIS ROUTINE DOES A FORM FEED
i

CALL CISCR
LXT H,TPDIS
SHLD LACS
CALL . CLLINE
MVT A, d0H
STA clrsx
STA CURSY
CALL R
JMP SETUP
:THE SCREEN.

v a,oFed |
MVI B, CURBOT

“INR B
LXI 4, TPDIS
LXI D; INGTH
MOV MJA
DAD D
DCR B
JINZ LOADX
RET
r
$THIS ROUTINE DOES A LINE FEED
CALL INFDL
Mp SETUP
’

;LINE FEED
toa CURSY
CPI - CURBOT
Jz ONBOT
INR A
STA CURSY

SCREEN

AFN-01304A

APPLICATIONS

@408 CDAS@4 658 CALL = CAICU ;CALCULATE ADDRESS

#AGB 22E50F 659 SHED = LOC3o {SAVE TO CLEAR LINE

@APE CD15@4 = 660 CALL CLLINE :CLEAR THE LINE

@411 CDB333 661 CALL LDCUR :LOAD THE CURSOR

8414 C9 ggg RET :LEAVE
664 $THIS \ROUITNE CLEARS THE LINE WHOSE FIRST ADIRESS
665 (IS I N'LOCBA. PUSH INSTRUCTIONS ARE USED TO RAPIDLY
ggg CLEAR THE L

@415 £3 868 CLLINE: br ;NO INTERRUPTS HERE

@415 2AESOF 669 LHLD LOCSg ;GET LOC82

- 3419 115000 678 LXI D, LNGTH “GET OFFSET

g41C 19 671 DAD D ;ADD OFFSET

241D EB 672 XCHG :PUT START IN DE

@41E 2100008 673 LXI H, 00924 $ZERO_HL

@421 39 674 DAD sh :GET STACK

@422 £8B 675 XCHG -pur STACK IN D

9423 F9 676 SPHL PUT START IN SP

9424 212028 617 LXI H, 20204 iPUT SPACES IN HL
ggg sNOW DO 40 PUSH INSTRUCTIONS TO CLEAR THE LINE
681 REPT (LNGTH/2)
682 PUSH H
683 ENDHM _

@427 E5 684+ PUSH H

2428 E5 685+ PUSH H

3429 E5 686+ PUSH = H

42A E5 687+ PUSH H

#4728 E5 688+ PUSH H

g42C E5 680+ PUSH H

242D ES5 698+ PUSH H

#42E E5 - 691+ PUSH H

@4oF E5 692+ PUSH H

@430 E5 693+ PUSH H

#431 E5 694+ PUSH H

@432 E5 695+ PUSH H

@433 E5 69+ PUSH H

@434 ES 697+ PUSH H

@435 E5 698+ PUSH H

#436 ES 599+ PUSH H

9437 E5 780+ PUSH H

#438 E5 781+ PUSH H

@439 E5 102+ PUSH H

#43A E5 783+ PUSH H

7438 ES 104+ PUSH H

@43C E5 785+ PUSH H

243D E5 706+ PUSH H

@43E E5 787+ _ PUSH H

§43F E5 728+ POSH * 'H

#44p E5 7 POSH H

@441 E5 116+ PUSH H

#4432 E5 711+ PUSH H

9443 E5 N2+ PUSH H

#444 E5 713+ PUSH H

@445 ES 714+ PUSH H

9446 E5 yi PUSH H

@447 E5 76 PUSH H

9448 £5 7+ PUSH H

@449 E5 718+ PUSH H

44A E5 719+ PUSH H

3448 E5 720+ PUSH - H

#44C E5 - 721+ PUSH H

@44D ES 122+ PUSH H

@44E E5 723+ PUSH H .

@A4F 724 XCHG ;PUT STACK IN HL

@454 F9 725 SPHL $PUT IT BACK IN SP

451 Fa 726 EL [ENABLE INTERRUPTS

9452 C9 121 RET ;GO BACK)

’

729 :IF CURSOR IS ON THE BOTTOM OF THE SCREEN THIS ROUTINE
130 ;IS USED TO IMPLEMENT THE LINE FEED

P453 2AE3QF 732 ONBOT: [HLD TOPAD :GET TOP ADDRESS

@456 22E50F 733 SHLD LOC8@ $SAVE IT IN LOCS@

@459 115498 73] LXI D, INGTH -LI'NE LeNGTH

245C 19 735 DAD D _ ;ADD H

@450 PIDOOF 736 LXI B, LAST -GET Bm'rm LINE

g458 737 MOV . AH WGET

2461 BS 738 cMp) $SAME s B

3462 C26D04 739 JNZ ARND :LEAVE TEONOT SAME

5 7D 740 MOV AL ;GET L
466 B9 741 cMp ¢ $SAME AS C
2467 C26D04 742 Nz ARND . ;LEAVE IF NOT SAM
6A 214008 743 LXI H, TPDIS :LOAD HL WITH TOP For pIspLAY
@46D 22E30F 744 ARND: SHID TOPAD :SAVE NEW TOP ADDRESS
837

AFN-01304A

APPLICATIONS

2479
247

CD1544
CDB893

8476 C

0000

EB
2AE30F
19
B
2130r0
19
DAC804
EB
c9
2130F8
19
C9

3AE20F
3650

[o°)

20028
5008
AQ28
Fpa8
4089
9489

- 768 OK1:
9

6
777 CALCU:

799 FIX:

LINTAB:

CALL - CLLINE ;CLEAR LINE
SAE'%L LDCIR °LOAD THE CURSOR

'THIS ROUTINE PUTS A CHARACTER ON THE SCREEN AND
NCREMENTS THE X CURSGR POSITION. A LINE FEED IS

. ,mssm:n IF THE INCREMENTED CURSOR EQUALS 81D
'752 CHRPUT:

éatr carcu sCALCULATE SCREEN POSITION
MOV A M iGET FIRST CHARACTER

CPI gken ;IS IT A CLEAR LINE

SHLD LOC8Z $SAVE LINE TO CLEAR

cz CLLINE SCLEAR LINE

LHLD LOC8S ;GET LINE

CALL ADX *ADD CURSOR X

LDA USCHR $GET CHARACTER

MoV M, A ;PUT IT ON SCREEN

LA clrsx $GET CURSOR X

INR $INCREMENT CURSOR X

CPI INGTH -jHAS IT GONE TOO FAR?

INZ OK1 ;IF NOT GOOD

CALL LNFDI1 + ;DO A LINE FEED

JMp CGRT ‘DO A CR

STA CURSX ;SAVE CURSOR

CALL LDCUR ;LOAD THE CURSOR

Jup SETUP ; LEAVE

,’I‘HIS ROUTINE TAKES THE TOP ADIRESS AND THE Y _CURSOR
+ LOCATION AND CALCULATES, THE ADDRESS OF THE LINE
ITHAT THE CURSOR-IS On- Tie RESULT IS RETURNED IN H

IAND L AND ALL REGTSTERS MEE 52

fxr LINTAB iGET LINE TABLE INTO H AND L
LDA OR iGET CURSOR INTO A

RLC ;SET UP A FOR LOOKUP TABLE

MVT B, 80H +ZERO B

MOV % iPUT CURSOR INTO

DAD B 3ADD LINE TABLE TO Y CURSOR

MOV AM ;PUT LOW LINE. TABLE INTO A

MOV C/A * ;PUT [OW LINE TABLE INTO C
INX d +CHANGE MEMORY POINTER

MOV A,M ;PUT HIGH LINE TABLE INTO A

MOV BlA PRUT HICH LINE TABLE INTO 8
LXI H, BF8agH ;TWOS COMPLEMENT SCREEN LOCATION

DAD B 7SUBTRACT OFFSET

XCHG -SAVE HL IN DE

[ALD TOPAD GET TOP ADDRESS IN H AND L

DAD D {GET DISPLACED ADDRESS

XCHG iSAVE IT IN D

LXI H, 0FO30H FTWOS COMPLEMENT SCREEZN LOCATION

DAD D :SEE IF WE ARE OFF THE SCREEN

Jc FIX :IF WE ARE FIX IT

XCHG $GET DISPLACED ADDRESS BACK

RET #GO BACK

LXI H,0F830H $SCREEN BOUNIR

DAD +ADJUST SCREEN

RET GO BAC

-THIS ROUI‘INE ADDS THE X CURSOR LOCATION TO THE

ADDRESS
}‘I[\'IIAT IEEIDIE THE H AND L REGISTERS AND RE'I'URDS THE RESULT
I

Loa CURSX ;GET CURSOR

MVL B,a24 - ;ZERO B

MOV C,A 'PUI‘ CURSOR XINC

DAD B . 'ADDCLRSORXTOHANDL
RE.'I‘ ;LEAVE

THIS TABLE CONTAINS THE OFE‘SET ADDRESSES 'FOR EA.CH
iOF THE 25 DISPLAYED LINES

v seT o
REPT (cmaorm)
W S+ (LNGTH*LINNUM)
é.mm SET (LINNU"1+1)
DW TPDIS+ tsNLNGTH*LINNUM)
LINNUM ssrr (LI 1)
'SNLNGTH*LINNU*!)
anm sa.'r LI UM+1
TPDIS rsNLNc,'rH LINNUM)
LINNUM SET {
DW TPDIS+ (LNGTH*LINNUM)
mem sm- LINNUM+1
+§NLNGTH LINNUM)

LINNUM SET
f PDIS+(LNGTH*LINNU"I)

' 838 AFN-01304A

APPLICATIONS

6
EQ@9
7
300A

8G0A
DoaA
2¢a8

EB 7008

Cags
1g8C

Bpac
236D
580D
A90OD

' F@eD

400E
93gE
EGQE
300F
830F

ATZNBRENDSIES AL

KYLKUP:

LINNUM SET (LINNUM+1
DW TPD: S+(LNG’1‘
B&JNNUVI SET NNUM+-

LINNUM)

TPD S+ {LNGTH*LINNUM)

LINNLM SET {LINNUM+L
TPDLIS+

LNGTH*LINNUM)

LINNUVI SET LIP&NU‘IH.
LINNLM SET
DW
LINNUM S
DN
LINNUM SE
LINNUM SET (LI
DW

LINNUM SET
DW

LINNUM SET
DW
LINNUM SET
DW
LINNUM SET
DW
B}’NNUM SET (LINNUM:

TPDIS+ bgq.uc;'r'-ﬂrr.nmuw)

H*LTNNUM)

H* L, INNUM) }

H*L,INNUM) ‘

St LINNUM)

TPDIS+ "chm*uwum
LINNUM+1)

TPD. s+§rﬁucrm.1wun)
LINNUM

TPDLS+ (LNGTH*LINNUM)

](_anuqﬂl
TPDLS+ (LNGTH*LINNUM)

T
TPD1S+ (LNGTH*LINNUM)

IIin‘NNUM SET
E‘.'NNW SET (LINNUM+:

TPD1S+ (LNGTH*LINNUM)

LINNUM SET fLINNlM+
DW TPDLS+ (LNGT!
LINNUM
DW
LINNUM SET
DW PD
LINNUM
W
LINNLM SET (LI NlM+l)
KEYBOARD LOQKUP TABLE

Son H*LINNUM)
](.S+ LNGTH LINNUM)

"I‘HIS TABLE CONTAINS ALL THE ASCII CHARACTERS
,THAT ARE TRAbSMI'I'I‘ED BY THE

TERMINAL
S ARE ORGANIZED SO THAT BITS #,1 AND 2
RETURN LINES

;T CHARAC

-ARE SCANLIES,BI'I'S34AND5ARET
$BIT 6 1S SHIFT AND'BIT 7 I5 C

ps 38H, 30H ;8 AND 9

DB 30H,2DH . :3 AND -

D8 3DH, 5CH ;= AND \

DB #8H,00H ;BS AND BREAK _

D8 75H, 69H ;LONER CASE U AND I

DB 6FH, ToH ;LONER CASE O AND P

DB 5BH, sca ;[AND \

DB oAH,7FH ;LF AND DELETE

DB GAH, 6BH ;LONER CASE J AND K

DB 6CH, 38H, JLOWER CASE L AND ;

D8 274,004 ;' AND NOTHING

DB @DH, 374 ;CR AND 7

D8 6DH, 2CH ;LONER CASE M AND COMMA
D8 2EH, 2FH ;PERIOD AND SLASH

DB @0d, 004 ;BLANK AND NOTHING

DB 804, ooH iNOTHING AND NOTHING
D8 9oH,61H sNOTHING AND LOWER CASE A
D8 TAH, 78H ;LONER CASE Z AND X

D8 63H,76H ;LONER CASE C AND V

DB 620, 6EH . ;LOWER CASE B AND N

AFN-01304A

APPLICATIONS

A
(e yinl
gas
~J
(X

] SV UDRDDDR
LRZRSARLIE IS
QD PO O~INUWN I~ T

by
@

66

NG~ !

74

899
900
981

902
T 983

984
945
996
937
928
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925

926

927
928
929
930
931
932
933
934
935
936
937
938

939

949
941
942

PEEBE PR EEE EEEEPREEEEEEEEEEREREEEBEREEERERERRERER R

{ B
794, 60H

20H, 204
64H,66ﬁ
67H,68H
0¢H,71H
774,734
65H,72H
744,804

" 1BH,31H

324,334
34H,35H
364, 804
2AH, 28H
29H, 5FH
24,800
08H, 004
55H,49H
4FH, 50H
5DH, 3gH
@AH, 7FH
4AH, 4BH
4CH, 3H
224, 80H
@DH, 26H
4DH, 3CH
3EH, 3FH
@0H, 62H
20H, 601
@0, 414
SAH, 58H
434,564
424, 4EH
SOH, BH
80H, 208
44H,46H

47H,48H
884,514
574,534
454,524
544,004
1BH,21H
404,234
244,254
5EH, 80H

* jLOWER CASE Y AND NOTHING

;NOTHING AND SPACE
;LOWER CASE D AND F
;LOWER CASE G AND H
;TAB AND LOWER CASE Q
;LOWER CASE W AND S
;LONER CASE E AND R

";LOWER CASE T AND NOTHING

;ESCAPE AND 1

7 2 AND3
‘3 AAND 5

; 6 AND NOTHING

#% AND)

:(AND -

;+ AND NOTHING

:BS AND BREAK

;U AND I

;0 AND P

;1 AND NO CHARACTER
;LF AND DELETE

:J AND K

;L AND :

;" AND NO CHARACTER
:CR AND &

M AND <

s> AND ?

3BLANK AND NOTHING
;NOTHING AND NOTHING
;NOTHING AND A

:Z AND X

;C AND V

B AND N

;Y AND NOTHING

;NO CHARACTER AND SPACE
;D AND F

;G AND H

;TAB AND Q

W AND S

;E AND R

;T AND NO CONNECTION
+ESCAPE AND |

;@ AND #

:$ AND %

7~ AND NO CONNECTION

AFN-D1304A °

APPUCK"ONS

esne
[A)
IO 00~ D ()
BAWI-RD

=

I

W
2
[ST10]

ERRREARS
WO W~IWW
Ne[OSOER
RVRLWIONISR

SCD Ag

5DS BA
35D6 B0

=
5
2OmOwS

982
983
984
985
986

BDLK:

PSP 3 S IEEEEERESE BERBEBEEREEE

B8y

g8

\

L

¥ ¥

¥

888

86H , GoH
@0H, 02
15, 09H
@FH, 18H
@8H, 8CH
@AH, 7FH
¢AH, BBH
#CH, BH
@6H, 80H
@DH, AoH

apd, 60H -

264,004
#eH, 8o
@eH, oo

- 1AH, 18H

#34,16H
@24,0EH

194,804

@0, 20H
P4H, @6H
@74, 088H
@0H, 11H
174,134
@6H, 120
144,804
1BH, 104
1EH, 1CH
14H, 1FH
POH , BAH

80H,02H,40H,81H

BAGH, AgH
504,884
28H,00H
144,008

OAH, BOH
i

LOOK UP TABLE FOR 8253
?%H,854,69H, 63H

HIS IS WHERE THE CONTROL CHARACTERS ARE LOOKED UP
- @oH, 604
@0oH,80H

sNOTHING

sNOTHING

sNOTHING

sNOTHING

;CONTROL U AND I
;CONTROL O AND P
;CONTROL { AND '\

;LF AND DELETE

sCONTROL J AND K
;CONI'ROL L AND NOTHING
sNOTHING

;CR AND NOTHING
;CONTROL M AND COMMA
sNOTHING)

sNOTHING J
;NOTHING AND NO‘I"HING
;CONTROL 2 AND X
;CONTROL C AND V
;CONTROL B AND N
;CONTROL Y AND NOTHING
;NOTHING AND SPACE
;CONTROL D AND F
;CONTROL G AND H
;NOTHING AND CONTROL Q
;CONTROL W AND S
;CONTROL E AND R _
;CONTROL W AND NOTHING
;ESCAPE AND HOME (CREDIT)
sCURSOR UP AND DOWN (CREDIT)
;CURSOR RIGHT AND LEFT(CREDIT)

" ;NOTHING

BAUD RATE GENERATOR
;75 AND 118 BAUD

;153 AND 30@ BAUD

;680 BAUD

;1200 BAUD
12409 BAUD
;4808 BAUD
;9568 BAUD

AFN-01304A

APPLICATIONS

938 ;DATA AREA

gFEL 333 bra
OFE1H

2001 991 CuRsY: Ds 1
20851 992 CURSX: DS
2092 993 TOPAD: DS 2
2682 994 LOCB@: DS 2
2881 995 USCHR: I 1
2002 995 CURAD: L[5 2
2ga1 997 K : DS 1
22d1 998 KBCHR: DS 1
8801 999 BAUD: IS 1
241 1999 KEYOK: DS 1
2aa1 196} ESCP: 6 i
200 1882 SHCON: IS 1
a9 1883 RETLIN: DS 1
200 1994 SCNLIN: [1

1445 END
PUBLIC SYMBOLS
EXTERNAL SYMBOLS
USER SYMBOLS
ADX A 24CD ARND A 046D BAUD A @FEC BDLK A 95C5 BTDIS A 9F89 BYPASS A @48F
CAP) 22E CGRT A @3AD CHREC A @24E CHRDUT A 9477 CLEAR A g2CF CLLINE A 9415
CLRLIN A @327 CLRST A g2D5 CLSCR A @384 CONTS A 498@ CNT1 A 63%1 ON A 5002
CNTM A 633 CNWDS5 A 1883 . CONCL A @2FD G Algeg CRTS A lagl C A QFE8
CURSX A @FE2 CURSY A @FEL A @2AE ESCP A PFEE ESKAP A @3A ESSQ A 927B
PMED A @3CA FRAME A'@le7 GDI8 A 9359 HOME A 8397 INJS A g2F9 INTTS A 1401
KEYDWN A OFEA KEYINP A @121 KEYOK A @FED KEYS A 6131 K A 0984 KYCHNG A #1BA
KYLKUP A @537 LAST A @FD LIOCUR A ¢383 - LEFT A @35E LINNUM A @@l19 LINTAB A #4D5
INFD A @3Fe LNFD) A O3FC INGTH A @858 LOADX A @3EF LOC83 A GFES LOOPF A @@AT
LPKBD A @898 NOVER A 938D = NTOVER A'9364 OKl A 949C OK7 A 9150 ONBOT A 4453
POPDAT A @034 PORTA A 1808 PORTS A 1881 - PORTC A 1832 RDKB A @1BF RETLIN A OFBd
RXRDY A @113 SAVKEY A 1AF SCNLIN A @FF1 SCR _ A @211 SETUP A OL@F SHCON A OFEF
STBAUD A @BBDC A 9223 STPTR A GFEJ TOPAD A PFE3 TPDIS A 08¢ TRANS A 0148
UPl A @QIE9 UBRCUR A @333 USCHR A -@FE7 ~ USTD ' A AGGZ US A Agal

ASSEMBLY COMPLETE, NO ERRORS

842 . AFN-01304A

